Matrix diagonalization is at the cornerstone of numerous fields of scientific computing. Diagonalizing a matrix to solve an eigenvalue problem requires a sequential path of iterations that eventually reaches a sufficiently converged and accurate solution for all the eigenvalues and eigenvectors. This typically translates into a high computational cost. Here we demonstrate how reinforcement learning, using the AlphaZero framework, can accelerate Jacobi matrix diagonalizations by viewing the selection of the fastest path to solution as a board game. To demonstrate the viability of our approach we apply the Jacobi diagonalization algorithm to symmetric Hamiltonian matrices that appear in quantum chemistry calculations. We find that a significant acceleration can often be achieved. Our findings highlight the opportunity to use machine learning as a promising tool to improve the performance of numerical linear algebra.
Environmental perception is a key element of autonomous driving because the information received from the perception module influences core driving decisions. An outstanding challenge in real-time perception for autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints on both computation and power have to be taken into account for real-time perception in autonomous vehicles. Larger object detection models tend to produce the best results, but are also slower at runtime. Since the most accurate detectors cannot run in real-time locally, we investigate the possibility of offloading computation to edge and cloud platforms, which are less resource-constrained. We create a synthetic dataset to train object detection models and evaluate different offloading strategies. Using real hardware and network simulations, we compare different trade-offs between prediction quality and end-to-end delay. Since sending raw frames over the network implies additional transmission delays, we also explore the use of JPEG and H.265 compression at varying qualities and measure their impact on prediction metrics. We show that models with adequate compression can be run in real-time on the cloud while outperforming local detection performance.
Cross-domain and cross-compositional generalization of Text-to-SQL semantic parsing is a challenging task. Existing Large Language Model (LLM) based solutions rely on inference-time retrieval of few-shot exemplars from the training set to synthesize a run-time prompt for each Natural Language (NL) test query. In contrast, we devise an algorithm which performs offline sampling of a minimal set-of few-shots from the training data, with complete coverage of SQL clauses, operators and functions, and maximal domain coverage within the allowed token length. This allows for synthesis of a fixed Generic Prompt (GP), with a diverse set-of exemplars common across NL test queries, avoiding expensive test time exemplar retrieval. We further auto-adapt the GP to the target database domain (DA-GP), to better handle cross-domain generalization; followed by a decomposed Least-To-Most-Prompting (LTMP-DA-GP) to handle cross-compositional generalization. The synthesis of LTMP-DA-GP is an offline task, to be performed one-time per new database with minimal human intervention. Our approach demonstrates superior performance on the KaggleDBQA dataset, designed to evaluate generalizability for the Text-to-SQL task. We further showcase consistent performance improvement of LTMP-DA-GP over GP, across LLMs and databases of KaggleDBQA, highlighting the efficacy and model agnostic benefits of our prompt based adapt and decompose approach.
The curse-of-dimensionality (CoD) taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs as Richard Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. In this paper, we develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and samples randomly a subset of these dimensional pieces in each iteration of training PINNs. We theoretically prove the convergence guarantee and other desired properties of the proposed method. We experimentally demonstrate that the proposed method allows us to solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. For instance, we solve nontrivial nonlinear PDEs (one HJB equation and one Black-Scholes equation) in 100,000 dimensions in 6 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, SDGD can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.
Video Action Recognition (VAR) is a challenging task due to its inherent complexities. Though different approaches have been explored in the literature, designing a unified framework to recognize a large number of human actions is still a challenging problem. Recently, Multi-Modal Learning (MML) has demonstrated promising results in this domain. In literature, 2D skeleton or pose modality has often been used for this task, either independently or in conjunction with the visual information (RGB modality) present in videos. However, the combination of pose, visual information, and text attributes has not been explored yet, though text and pose attributes independently have been proven to be effective in numerous computer vision tasks. In this paper, we present the first pose augmented Vision-language model (VLM) for VAR. Notably, our scheme achieves an accuracy of 92.81% and 73.02% on two popular human video action recognition benchmark datasets, UCF-101 and HMDB-51, respectively, even without any video data pre-training, and an accuracy of 96.11% and 75.75% after kinetics pre-training.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.