亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Systems of small distributed satellites in low Earth orbit (LEO) transmitting cooperatively to a multiple antenna ground station (GS) are investigated. These satellite swarms have the benefit of much higher spatial separation in the transmit antennas than traditional big satellites with antenna arrays, promising a massive increase in spectral efficiency. However, this would require instantaneous perfect channel state information (CSI) and strong cooperation between satellites. In practice, orbital velocities around 7.5 km/s lead to very short channel coherence times on the order of fractions of the inter-satellite propagation delay, invalidating these assumptions. In this paper, we propose a distributed linear precoding scheme and a GS equalizer relying on local position information. In particular, each satellite only requires information about its own position and that of the GS, while the GS has complete positional information. Due to the deterministic nature of satellite movement this information is easily obtained and no inter-satellite information exchange is required during transmission. Based on the underlying geometrical channel approximation, the optimal inter-satellite distance is obtained analytically. Numerical evaluations show that the proposed scheme is, on average, within 99.8% of the maximum achievable rate for instantaneous CSI and perfect cooperation

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · Wireless Networks · 統計量 · 優化器 ·
2022 年 2 月 21 日

Device density in cellular networks is expected to increase considerably in the next future. Accordingly, the access point (AP) will equip massive multiple-input multiple-output (mMIMO) antennas, using collimated millimeter-wave (mmW) and sub-THz communications, and increase the bandwidth to accommodate the growing data rate demands. In this scenario, interference plays a critical role and, if not characterized and mitigated properly, might limit the performances of the network. In this context, this paper derives the statistical properties of the aggregated interference power for a cellular network equipping a mMIMO cylindrical array. The proposed statistical model considers the link blockage and other network parameters such as antenna configuration and device density. The findings show that the characteristic function (CF) of the aggregated interference power can be regarded as a weighted mixture of two alpha-stable distributions. Furthermore, by analyzing the service probability, it is found that there is an optimal configuration of the array depending on the AP height and device density. The proposed statistical model can be part of the design of dense networks providing valuable insights for optimal network deployment

This paper considers a single-cell massive MIMO (multiple-input multiple-output) system with dual-polarized antennas at both the base station and users. We study a channel model that takes into account several practical aspects that arise when utilizing dual-polarization, such as channel cross-polar discrimination (XPD) and cross-polar correlations (XPC) at the transmitter and receiver. We analyze uplink and downlink achievable spectral efficiencies (SE) with and without successive interference cancellation (SIC) for the linear minimum mean squared error (MMSE), zero-forcing (ZF), and maximum ratio (MR) combining/precoding schemes. In addition, we derive the statistical properties of the MMSE channel estimator for the dual-polarized channel model. These estimates are used to implement different precoding and combining schemes when the uplink and downlink SE expressions are calculated for the case. Closed-form uplink and downlink SE expressions for MR combining/precoding are derived. Based on these results, we also provide power control algorithms to maximize the uplink and downlink sum SEs. Moreover, we compare the SEs achieved in dual-polarized and uni-polarized setups numerically and evaluate the impact of XPD and XPC.

The reconfigurable intelligent surface (RIS) technology is a promising enabler for millimeter wave (mmWave) wireless communications, as it can potentially provide spectral efficiency comparable to the conventional massive multiple-input multiple-output (MIMO) but with significantly lower hardware complexity. In this paper, we focus on the estimation and projection of the uplink RIS-aided massive MIMO channel, which can be time-varying. We propose to let the user equipments (UE) transmit Zadoff-Chu (ZC) sequences and let the base station (BS) conduct maximum likelihood (ML) estimation of the uplink channel. The proposed scheme is computationally efficient: it uses ZC sequences to decouple the estimation of the frequency and time offsets; it uses the space-alternating generalized expectation-maximization (SAGE) method to reduce the high-dimensional problem due to the multipaths to multiple lower-dimensional ones per path. Owing to the estimation of the Doppler frequency offsets, the time-varying channel state can be projected, which can significantly lower the overhead of the pilots for channel estimation. The numerical simulations verify the effectiveness of the proposed scheme.

The accurate estimation of Channel State Information (CSI) is of crucial importance for the successful operation of Multiple-Input Multiple-Output (MIMO) communication systems, especially in a Multi-User (MU) time-varying environment and when employing the emerging technology of Reconfigurable Intelligent Surfaces (RISs). Their predominantly passive nature renders the estimation of the channels involved in the user-RIS-base station link a quite challenging problem. Moreover, the time-varying nature of most of the realistic wireless channels drives up the cost of real-time channel tracking significantly, especially when RISs of massive size are deployed. In this paper, we develop a channel tracking scheme for the uplink of RIS-enabled MU MIMO systems in the presence of channel fading. The starting point is a tensor representation of the received signal and we rely on its PARAllel FACtor (PARAFAC) analysis to both get the initial estimate and track the channel time variation. Simulation results for various system settings are reported, which validate the feasibility and effectiveness of the proposed channel tracking approach.

There has been significant attention given to developing data-driven methods for tailoring patient care based on individual patient characteristics. Dynamic treatment regimes formalize this through a sequence of decision rules that map patient information to a suggested treatment. The data for estimating and evaluating treatment regimes are ideally gathered through the use of Sequential Multiple Assignment Randomized Trials (SMARTs) though longitudinal observational studies are commonly used due to the potentially prohibitive costs of conducting a SMART. These studies are typically sized for simple comparisons of fixed treatment sequences or, in the case of observational studies, a priori sample size calculations are often not performed. We develop sample size procedures for the estimation of dynamic treatment regimes from observational studies. Our approach uses pilot data to ensure a study will have sufficient power for comparing the value of the optimal regime, i.e. the expected outcome if all patients in the population were treated by following the optimal regime, with a known comparison mean. Our approach also ensures the value of the estimated optimal treatment regime is within an a priori set range of the value of the true optimal regime with a high probability. We examine the performance of the proposed procedure with a simulation study and use it to size a study for reducing depressive symptoms using data from electronic health records.

In this paper, we consider the motion energy minimization problem for a robot that uses millimeter-wave (mm-wave) communications assisted by an intelligent reflective surface (IRS). The robot must perform tasks within given deadlines and it is subject to uplink quality of service (QoS) constraints. This problem is crucial for fully automated factories that are governed by the binomial of autonomous robots and new generations of mobile communications, i.e., 5G and 6G. In this new context, robot energy efficiency and communication reliability remain fundamental problems that couple in optimizing robot trajectory and communication QoS. More precisely, to account for the mutual dependency between robot position and communication QoS, robot trajectory and beamforming at the IRS and access point all need to be optimized. We present a solution that can decouple the two problems by exploiting mm-wave channel characteristics. Then, a closed-form solution is obtained for the beamforming optimization problem, whereas the trajectory is optimized by a novel successive-convex optimization-based algorithm that can deal with abrupt line-of-sight (LOS) to non-line-of-sight (NLOS) transitions. Specifically, the algorithm uses a radio map to avoid collisions with obstacles and poorly covered areas. We prove that the algorithm can converge to a solution satisfying the Karush-Kuhn-Tucker conditions. The simulation results show a fast convergence rate of the algorithm and a dramatic reduction of the motion energy consumption with respect to methods that aim to find maximum-rate trajectories. Moreover, we show that the use of passive IRSs represents a powerful solution to improve the radio coverage and motion energy efficiency of robots.

Physical layer authentication (PLA) is the process of claiming identity of a node based on its physical layer characteristics such as channel fading or hardware imperfections. In this work, we propose a novel PLA method for the inter-satellite communication links (ISLs) of the LEO satellites. In the proposed PLA method, multiple receiving satellites validate the identity of the transmitter by comparing the Doppler frequency measurements with the reference mobility information of the legitimate transmitter and then fuse their decision considering the selected decision rule. Analytical expressions are obtained for the spoofing detection probability and false alarm probability of the fusion methods. Numerically obtained high authentication performance results pave the way to a novel and easily integrable authentication mechanism for the LEO satellite networks.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.

Object tracking is a hot topic in computer vision. Thanks to the booming of the very high resolution (VHR) remote sensing techniques, it is now possible to track targets of interests in satellite videos. However, since the targets in the satellite videos are usually too small compared with the entire image, and too similar with the background, most state-of-the-art algorithms failed to track the target in satellite videos with a satisfactory accuracy. Due to the fact that optical flow shows the great potential to detect even the slight movement of the targets, we proposed a multi-frame optical flow tracker (MOFT) for object tracking in satellite videos. The Lucas-Kanade optical flow method was fused with the HSV color system and integral image to track the targets in the satellite videos, while multi-frame difference method was utilized in the optical flow tracker for a better interpretation. The experiments with three VHR remote sensing satellite video datasets indicate that compared with state-of-the-art object tracking algorithms, the proposed method can track the target more accurately.

北京阿比特科技有限公司