Tempered stable distributions are frequently used in financial applications (e.g., for option pricing) in which the tails of stable distributions would be too heavy. Given the non-explicit form of the probability density function, estimation relies on numerical algorithms which typically are time-consuming. We compare several parametric estimation methods such as the maximum likelihood method and different generalized method of moment approaches. We study large sample properties and derive consistency, asymptotic normality, and asymptotic efficiency results for our estimators. Additionally, we conduct simulation studies to analyze finite sample properties measured by the empirical bias, precision, and asymptotic confidence interval coverage rates and compare computational costs. We cover relevant subclasses of tempered stable distributions such as the classical tempered stable distribution and the tempered stable subordinator. Moreover, we discuss the normal tempered stable distribution which arises by subordinating a Brownian motion with a tempered stable subordinator. Our financial applications to log returns of asset indices and to energy spot prices illustrate the benefits of tempered stable models.
We assume to be given structural equations over discrete variables inducing a directed acyclic graph, namely, a structural causal model, together with data about its internal nodes. The question we want to answer is how we can compute bounds for partially identifiable counterfactual queries from such an input. We start by giving a map from structural casual models to credal networks. This allows us to compute exact counterfactual bounds via algorithms for credal nets on a subclass of structural causal models. Exact computation is going to be inefficient in general given that, as we show, causal inference is NP-hard even on polytrees. We target then approximate bounds via a causal EM scheme. We evaluate their accuracy by providing credible intervals on the quality of the approximation; we show through a synthetic benchmark that the EM scheme delivers accurate results in a fair number of runs. In the course of the discussion, we also point out what seems to be a neglected limitation to the trending idea that counterfactual bounds can be computed without knowledge of the structural equations. We also present a real case study on palliative care to show how our algorithms can readily be used for practical purposes.
Fractional derivatives are a well-studied generalization of integer order derivatives. Naturally, for optimization, it is of interest to understand the convergence properties of gradient descent using fractional derivatives. Convergence analysis of fractional gradient descent is currently limited both in the methods analyzed and the settings analyzed. This paper aims to fill in these gaps by analyzing variations of fractional gradient descent in smooth and convex, smooth and strongly convex, and smooth and non-convex settings. First, novel bounds will be established bridging fractional and integer derivatives. Then, these bounds will be applied to the aforementioned settings to prove $O(1/T)$ convergence for smooth and convex functions and linear convergence for smooth and strongly convex functions. Additionally, we prove $O(1/T)$ convergence for smooth and non-convex functions using an extended notion of smoothness that is more natural for fractional derivatives. Finally, empirical results will be presented on the potential speed up of fractional gradient descent over standard gradient descent as well as the challenges of predicting which will be faster in general.
A sharp, distribution free, non-asymptotic result is proved for the concentration of a random function around the mean function, when the randomization is generated by a finite sequence of independent data and the random functions satisfy uniform bounded variation assumptions. The specific motivation for the work comes from the need for inference on the distributional impacts of social policy intervention. However, the family of randomized functions that we study is broad enough to cover wide-ranging applications. For example, we provide a Kolmogorov-Smirnov like test for randomized functions that are almost surely Lipschitz continuous, and novel tools for inference with heterogeneous treatment effects. A Dvoretzky-Kiefer-Wolfowitz like inequality is also provided for the sum of almost surely monotone random functions, extending the famous non-asymptotic work of Massart for empirical cumulative distribution functions generated by i.i.d. data, to settings without micro-clusters proposed by Canay, Santos, and Shaikh. We illustrate the relevance of our theoretical results for applied work via empirical applications. Notably, the proof of our main concentration result relies on a novel stochastic rendition of the fundamental result of Debreu, generally dubbed the "gap lemma," that transforms discontinuous utility representations of preorders into continuous utility representations, and on an envelope theorem of an infinite dimensional optimisation problem that we carefully construct.
In the realm of interpretability and out-of-distribution generalisation, the identifiability of latent variable models has emerged as a captivating field of inquiry. In this work, we delve into the identifiability of Switching Dynamical Systems, taking an initial stride toward extending identifiability analysis to sequential latent variable models. We first prove the identifiability of Markov Switching Models, which commonly serve as the prior distribution for the continuous latent variables in Switching Dynamical Systems. We present identification conditions for first-order Markov dependency structures, whose transition distribution is parametrised via non-linear Gaussians. We then establish the identifiability of the latent variables and non-linear mappings in Switching Dynamical Systems up to affine transformations, by leveraging identifiability analysis techniques from identifiable deep latent variable models. We finally develop estimation algorithms for identifiable Switching Dynamical Systems. Throughout empirical studies, we demonstrate the practicality of identifiable Switching Dynamical Systems for segmenting high-dimensional time series such as videos, and showcase the use of identifiable Markov Switching Models for regime-dependent causal discovery in climate data.
This paper reveal the selective rotation in the CNNs' forward processing. It elucidates the activation function as a discerning mechanism that unifies and quantizes the rotational aspects of the input data. Experiments show how this defined methodology reflects the progress network distinguish inputs based on statistical indicators, which can be comprehended or analyzed by applying structured mathematical tools. Our findings also unveil the consistency between artificial neural networks and the human brain in their data processing pattern.
Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.
Mixtures of experts have become an indispensable tool for flexible modelling in a supervised learning context, allowing not only the mean function but the entire density of the output to change with the inputs. Sparse Gaussian processes (GP) have shown promise as a leading candidate for the experts in such models, and in this article, we propose to design the gating network for selecting the experts from such mixtures of sparse GPs using a deep neural network (DNN). Furthermore, a fast one pass algorithm called Cluster-Classify-Regress (CCR) is leveraged to approximate the maximum a posteriori (MAP) estimator extremely quickly. This powerful combination of model and algorithm together delivers a novel method which is flexible, robust, and extremely efficient. In particular, the method is able to outperform competing methods in terms of accuracy and uncertainty quantification. The cost is competitive on low-dimensional and small data sets, but is significantly lower for higher-dimensional and big data sets. Iteratively maximizing the distribution of experts given allocations and allocations given experts does not provide significant improvement, which indicates that the algorithm achieves a good approximation to the local MAP estimator very fast. This insight can be useful also in the context of other mixture of experts models.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.