亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Depth estimation provides an alternative approach for perceiving 3D information in autonomous driving. Monocular depth estimation, whether with single-frame or multi-frame inputs, has achieved significant success by learning various types of cues and specializing in either static or dynamic scenes. Recently, these cues fusion becomes an attractive topic, aiming to enable the combined cues to perform well in both types of scenes. However, adaptive cue fusion relies on attention mechanisms, where the quadratic complexity limits the granularity of cue representation. Additionally, explicit cue fusion depends on precise segmentation, which imposes a heavy burden on mask prediction. To address these issues, we propose the GSDC Transformer, an efficient and effective component for cue fusion in monocular multi-frame depth estimation. We utilize deformable attention to learn cue relationships at a fine scale, while sparse attention reduces computational requirements when granularity increases. To compensate for the precision drop in dynamic scenes, we represent scene attributes in the form of super tokens without relying on precise shapes. Within each super token attributed to dynamic scenes, we gather its relevant cues and learn local dense relationships to enhance cue fusion. Our method achieves state-of-the-art performance on the KITTI dataset with efficient fusion speed.

相關內容

Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, which we term causal message-passing, is grounded in a high-dimensional approximate message passing methodology and is specifically tailored to experimental design settings with prevalent network interference. Utilizing causal message-passing, we present a practical algorithm for estimating the total treatment effect and demonstrate its efficacy in four numerical scenarios, each with its unique interference structure.

Text mining research has grown in importance in recent years due to the tremendous increase in the volume of unstructured textual data. This has resulted in immense potential as well as obstacles in the sector, which may be efficiently addressed with adequate analytical and study methods. Deep Bidirectional Recurrent Neural Networks are used in this study to analyze sentiment. The method is categorized as sentiment polarity analysis because it may generate a dataset with sentiment labels. This dataset can be used to train and evaluate sentiment analysis models capable of extracting impartial opinions. This paper describes the Sentiment Analysis-Deep Bidirectional Recurrent Neural Networks (SA-BDRNN) Scheme, which seeks to overcome the challenges and maximize the potential of text mining in the context of Big Data. The current study proposes a SA-DBRNN Scheme that attempts to give a systematic framework for sentiment analysis in the context of student input on institution choice. The purpose of this study is to compare the effectiveness of the proposed SA- DBRNN Scheme to existing frameworks to establish a robust deep neural network that might serve as an adequate classification model in the field of sentiment analysis.

Leveraging Input Convex Neural Networks (ICNNs), ICNN-based Model Predictive Control (MPC) successfully attains globally optimal solutions by upholding convexity within the MPC framework. However, current ICNN architectures encounter the issue of vanishing gradients, which limits their ability to serve as deep neural networks for complex tasks. Additionally, the current neural network-based MPC, including conventional neural network-based MPC and ICNN-based MPC, faces slower convergence speed when compared to MPC based on first-principles models. In this study, we leverage the principles of ICNNs to propose a novel Input Convex LSTM for Lyapunov-based MPC, with the specific goal of reducing convergence time and mitigating the vanishing gradient problem while ensuring closed-loop stability. From a simulation study of a nonlinear chemical reactor, we observed a mitigation of vanishing gradient problem and a reduction in convergence time, with a percentage decrease of 46.7%, 31.3%, and 20.2% compared to baseline plain RNN, plain LSTM, and Input Convex Recurrent Neural Network, respectively.

This article proposes a social simulation paradigm based on the GPT-3.5 large language model. It involves constructing Generative Agents that emulate human cognition, memory, and decision-making frameworks, along with establishing a virtual social system capable of stable operation and an insertion mechanism for standardized public events. The project focuses on simulating a township water pollution incident, enabling the comprehensive examination of a virtual government's response to a specific public administration event. Controlled variable experiments demonstrate that the stored memory in generative agents significantly influences both individual decision-making and social networks. The Generative Agent-Based Simulation System introduces a novel approach to social science and public administration research. Agents exhibit personalized customization, and public events are seamlessly incorporated through natural language processing. Its high flexibility and extensive social interaction render it highly applicable in social science investigations. The system effectively reduces the complexity associated with building intricate social simulations while enhancing its interpretability.

Database Management System (DBMS) fuzzing is an automated testing technique aimed at detecting errors and vulnerabilities in DBMSs by generating, mutating, and executing test cases. It not only reduces the time and cost of manual testing but also enhances detection coverage, providing valuable assistance in developing commercial DBMSs. Existing fuzzing surveys mainly focus on general-purpose software. However, DBMSs are different from them in terms of internal structure, input/output, and test objectives, requiring specialized fuzzing strategies. Therefore, this paper focuses on DBMS fuzzing and provides a comprehensive review and comparison of the methods in this field. We first introduce the fundamental concepts. Then, we systematically define a general fuzzing procedure and decompose and categorize existing methods. Furthermore, we classify existing methods from the testing objective perspective, covering various components in DBMSs. For representative works, more detailed descriptions are provided to analyze their strengths and limitations. To objectively evaluate the performance of each method, we present an open-source DBMS fuzzing toolkit, OpenDBFuzz. Based on this toolkit, we conduct a detailed experimental comparative analysis of existing methods and finally discuss future research directions.

Inspired by the recent success of large language models (LLMs) like ChatGPT, researchers start to explore the adoption of LLMs for agile hardware design, such as generating design RTL based on natural-language instructions. However, in existing works, their target designs are all relatively simple and in a small scale, and proposed by the authors themselves, making a fair comparison among different LLM solutions challenging. In addition, many prior works only focus on the design correctness, without evaluating the design qualities of generated design RTL. In this work, we propose an open-source benchmark named RTLLM, for generating design RTL with natural language instructions. To systematically evaluate the auto-generated design RTL, we summarized three progressive goals, named syntax goal, functionality goal, and design quality goal. This benchmark can automatically provide a quantitative evaluation of any given LLM-based solution. Furthermore, we propose an easy-to-use yet surprisingly effective prompt engineering technique named self-planning, which proves to significantly boost the performance of GPT-3.5 in our proposed benchmark.

Causal effect estimation from observational data is a central problem in causal inference. Methods based on potential outcomes framework solve this problem by exploiting inductive biases and heuristics from causal inference. Each of these methods addresses a specific aspect of causal effect estimation, such as controlling propensity score, enforcing randomization, etc., by designing neural network (NN) architectures and regularizers. In this paper, we propose an adaptive method called Neurosymbolic Causal Effect Estimator (NESTER), a generalized method for causal effect estimation. NESTER integrates the ideas used in existing methods based on multi-head NNs for causal effect estimation into one framework. We design a Domain Specific Language (DSL) tailored for causal effect estimation based on causal inductive biases used in literature. We conduct a theoretical analysis to investigate NESTER's efficacy in estimating causal effects. Our comprehensive empirical results show that NESTER performs better than state-of-the-art methods on benchmark datasets.

For generative AIs to be trustworthy, establishing transparent common grounding with humans is essential. As a preparation toward human-model common grounding, this study examines the process of model-model common grounding. In this context, common ground is defined as a cognitive framework shared among agents in communication, enabling the connection of symbols exchanged between agents to the meanings inherent in each agent. This connection is facilitated by a shared cognitive framework among the agents involved. In this research, we focus on the tangram naming task (TNT) as a testbed to examine the common-ground-building process. Unlike previous models designed for this task, our approach employs generative AIs to visualize the internal processes of the model. In this task, the sender constructs a metaphorical image of an abstract figure within the model and generates a detailed description based on this image. The receiver interprets the generated description from the partner by constructing another image and reconstructing the original abstract figure. Preliminary results from the study show an improvement in task performance beyond the chance level, indicating the effect of the common cognitive framework implemented in the models. Additionally, we observed that incremental backpropagations leveraging successful communication cases for a component of the model led to a statistically significant increase in performance. These results provide valuable insights into the mechanisms of common grounding made by generative AIs, improving human communication with the evolving intelligent machines in our future society.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司