亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

TikTok is one of the largest and fastest-growing social media sites in the world. TikTok features, however, such as voice transcripts, are often missing and other important features, such as OCR or video descriptions, do not exist. We introduce the Generative AI Enriched TikTok (GET-Tok) data, a pipeline for collecting TikTok videos and enriched data by augmenting the TikTok Research API with generative AI models. As a case study, we collect videos about the attempted coup in Peru initiated by its former President, Pedro Castillo, and its accompanying protests. The data includes information on 43,697 videos published from November 20, 2022 to March 1, 2023 (102 days). Generative AI augments the collected data via transcripts of TikTok videos, text descriptions of what is shown in the videos, what text is displayed within the video, and the stances expressed in the video. Overall, this pipeline will contribute to a better understanding of online discussion in a multimodal setting with applications of Generative AI, especially outlining the utility of this pipeline in non-English-language social media. Our code used to produce the pipeline is in a public Github repository: //github.com/gabbypinto/GET-Tok-Peru.

相關內容

Creating personalized hand avatars is important to offer a realistic experience to users on AR / VR platforms. While most prior studies focused on reconstructing 3D hand shapes, some recent work has tackled the reconstruction of hand textures on top of shapes. However, these methods are often limited to capturing pixels on the visible side of a hand, requiring diverse views of the hand in a video or multiple images as input. In this paper, we propose a novel method, BiTT(Bi-directional Texture reconstruction of Two hands), which is the first end-to-end trainable method for relightable, pose-free texture reconstruction of two interacting hands taking only a single RGB image, by three novel components: 1) bi-directional (left $\leftrightarrow$ right) texture reconstruction using the texture symmetry of left / right hands, 2) utilizing a texture parametric model for hand texture recovery, and 3) the overall coarse-to-fine stage pipeline for reconstructing personalized texture of two interacting hands. BiTT first estimates the scene light condition and albedo image from an input image, then reconstructs the texture of both hands through the texture parametric model and bi-directional texture reconstructor. In experiments using InterHand2.6M and RGB2Hands datasets, our method significantly outperforms state-of-the-art hand texture reconstruction methods quantitatively and qualitatively. The code is available at //github.com/yunminjin2/BiTT

In this paper, we propose Describe-and-Dissect (DnD), a novel method to describe the roles of hidden neurons in vision networks. DnD utilizes recent advancements in multimodal deep learning to produce complex natural language descriptions, without the need for labeled training data or a predefined set of concepts to choose from. Additionally, DnD is training-free, meaning we don't train any new models and can easily leverage more capable general purpose models in the future. We have conducted extensive qualitative and quantitative analysis to show that DnD outperforms prior work by providing higher quality neuron descriptions. Specifically, our method on average provides the highest quality labels and is more than 2 times as likely to be selected as the best explanation for a neuron than the best baseline.

Instruction-finetuned Large Language Models inherit clear political leanings that have been shown to influence downstream task performance. We expand this line of research beyond the two-party system in the US and audit Llama Chat in the context of EU politics in various settings to analyze the model's political knowledge and its ability to reason in context. We adapt, i.e., further fine-tune, Llama Chat on speeches of individual euro-parties from debates in the European Parliament to reevaluate its political leaning based on the EUandI questionnaire. Llama Chat shows considerable knowledge of national parties' positions and is capable of reasoning in context. The adapted, party-specific, models are substantially re-aligned towards respective positions which we see as a starting point for using chat-based LLMs as data-driven conversational engines to assist research in political science.

As large language models (LLMs) like ChatGPT have gained traction, an increasing number of news websites have begun utilizing them to generate articles. However, not only can these language models produce factually inaccurate articles on reputable websites but disreputable news sites can utilize LLMs to mass produce misinformation. To begin to understand this phenomenon, we present one of the first large-scale studies of the prevalence of synthetic articles within online news media. To do this, we train a DeBERTa-based synthetic news detector and classify over 15.46 million articles from 3,074 misinformation and mainstream news websites. We find that between January 1, 2022, and May 1, 2023, the relative number of synthetic news articles increased by 57.3% on mainstream websites while increasing by 474% on misinformation sites. We find that this increase is largely driven by smaller less popular websites. Analyzing the impact of the release of ChatGPT using an interrupted-time-series, we show that while its release resulted in a marked increase in synthetic articles on small sites as well as misinformation news websites, there was not a corresponding increase on large mainstream news websites.

Generative artificial intelligence (GenAI) can rapidly produce large and diverse volumes of content. This lends to it a quality of creativity which can be empowering in the early stages of design. In seeking to understand how creative ways to address practical issues can be conceived between humans and GenAI, we conducted a rapid ideation workshop with 21 participants where they used a large language model (LLM) to brainstorm potential solutions and evaluate them. We found that the LLM produced a greater variety of ideas that were of high quality, though not necessarily of higher quality than human-generated ideas. Participants typically prompted in a straightforward manner with concise instructions. We also observed two collaborative dynamics with the LLM fulfilling a consulting role or an assisting role depending on the goals of the users. Notably, we observed an atypical anti-collaboration dynamic where participants used an antagonistic approach to prompt the LLM.

Open-sourced Large Language Models (LLMs) have achieved great success in various NLP tasks, however, they are still far inferior to API-based models when acting as agents. How to integrate agent ability into general LLMs becomes a crucial and urgent problem. This paper first delivers three key observations: (1) the current agent training corpus is entangled with both formats following and agent reasoning, which significantly shifts from the distribution of its pre-training data; (2) LLMs exhibit different learning speeds on the capabilities required by agent tasks; and (3) current approaches have side-effects when improving agent abilities by introducing hallucinations. Based on the above findings, we propose Agent-FLAN to effectively Fine-tune LANguage models for Agents. Through careful decomposition and redesign of the training corpus, Agent-FLAN enables Llama2-7B to outperform prior best works by 3.5\% across various agent evaluation datasets. With comprehensively constructed negative samples, Agent-FLAN greatly alleviates the hallucination issues based on our established evaluation benchmark. Besides, it consistently improves the agent capability of LLMs when scaling model sizes while slightly enhancing the general capability of LLMs. The code will be available at //github.com/InternLM/Agent-FLAN.

The recent breakthroughs in Large Language Models (LLMs) have mostly focused on languages with easily available and sufficient resources, such as English. However, there remains a significant gap for languages that lack sufficient linguistic resources in the public domain. Our work introduces Komodo-7B, 7-billion-parameter Large Language Models designed to address this gap by seamlessly operating across Indonesian, English, and 11 regional languages in Indonesia. Komodo-7B is a family of LLMs that consist of Komodo-7B-Base and Komodo-7B-Instruct. Komodo-7B-Instruct stands out by achieving state-of-the-art performance in various tasks and languages, outperforming the benchmarks set by OpenAI's GPT-3.5, Cohere's Aya-101, Llama-2-Chat-13B, Mixtral-8x7B-Instruct-v0.1, Gemma-7B-it , and many more. This model not only demonstrates superior performance in both language-specific and overall assessments but also highlights its capability to excel in linguistic diversity. Our commitment to advancing language models extends beyond well-resourced languages, aiming to bridge the gap for those with limited linguistic assets. Additionally, Komodo-7B-Instruct's better cross-language understanding contributes to addressing educational disparities in Indonesia, offering direct translations from English to 11 regional languages, a significant improvement compared to existing language translation services. Komodo-7B represents a crucial step towards inclusivity and effectiveness in language models, providing to the linguistic needs of diverse communities.

Recent advances in large language models (LLMs) demonstrate that their capabilities are comparable, or even superior, to humans in many tasks in natural language processing. Despite this progress, LLMs are still inadequate at social-cognitive reasoning, which humans are naturally good at. Drawing inspiration from psychological research on the links between certain personality traits and Theory-of-Mind (ToM) reasoning, and from prompt engineering research on the hyper-sensitivity of prompts in affecting LLMs capabilities, this study investigates how inducing personalities in LLMs using prompts affects their ToM reasoning capabilities. Our findings show that certain induced personalities can significantly affect the LLMs' reasoning capabilities in three different ToM tasks. In particular, traits from the Dark Triad have a larger variable effect on LLMs like GPT-3.5, Llama 2, and Mistral across the different ToM tasks. We find that LLMs that exhibit a higher variance across personality prompts in ToM also tends to be more controllable in personality tests: personality traits in LLMs like GPT-3.5, Llama 2 and Mistral can be controllably adjusted through our personality prompts. In today's landscape where role-play is a common strategy when using LLMs, our research highlights the need for caution, as models that adopt specific personas with personalities potentially also alter their reasoning abilities in an unexpected manner.

There have been emerging research interest and advances in speech-to-speech translation (S2ST), translating utterances from one language to another. This work proposes Multitask Speech Language Model (MSLM), which is a decoder-only speech language model trained in a multitask setting. Without reliance on text training data, our model is able to support multilingual S2ST with speaker style preserved.

The problem of online social network manipulation for community canvassing is of real concern in today's world. Motivated by the study of voter models, opinion and polarization dynamics on networks, we model community canvassing as a dynamic process over a network enabled via gradient-based attacks on GNNs. Existing attacks on GNNs are all single-step and do not account for the dynamic cascading nature of information diffusion in networks. We consider the realistic scenario where an adversary uses a GNN as a proxy to predict and manipulate voter preferences, especially uncertain voters. Gradient-based attacks on the GNN inform the adversary of strategic manipulations that can be made to proselytize targeted voters. In particular, we explore $\textit{minimum budget attacks for community canvassing}$ (MBACC). We show that the MBACC problem is NP-Hard and propose Dynamic Multi-Step Adversarial Community Canvassing (MAC) to address it. MAC makes dynamic local decisions based on the heuristic of low budget and high second-order influence to convert and perturb target voters. MAC is a dynamic multi-step attack that discovers low-budget and high-influence targets from which efficient cascading attacks can happen. We evaluate MAC against single-step baselines on the MBACC problem with multiple underlying networks and GNN models. Our experiments show the superiority of MAC which is able to discover efficient multi-hop attacks for adversarial community canvassing. Our code implementation and data is available at //github.com/saurabhsharma1993/mac.

北京阿比特科技有限公司