亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a nonparametric statistical inference approach, empirical likelihood has been found very useful in numerous occasions. However, it encounters serious computational challenges when applied directly to the modern massive dataset. This article studies empirical likelihood inference over decentralized distributed networks, where the data are locally collected and stored by different nodes. To fully utilize the data, this article fuses Lagrange multipliers calculated in different nodes by employing a penalization technique. The proposed distributed empirical log-likelihood ratio statistic with Lagrange multipliers solved by the penalized function is asymptotically standard chi-squared under regular conditions even for a divergent machine number. Nevertheless, the optimization problem with the fused penalty is still hard to solve in the decentralized distributed network. To address the problem, two alternating direction method of multipliers (ADMM) based algorithms are proposed, which both have simple node-based implementation schemes. Theoretically, this article establishes convergence properties for proposed algorithms, and further proves the linear convergence of the second algorithm in some specific network structures. The proposed methods are evaluated by numerical simulations and illustrated with analyses of census income and Ford gobike datasets.

相關內容

The Stochastic Gradient Descent method (SGD) and its stochastic variants have become methods of choice for solving finite-sum optimization problems arising from machine learning and data science thanks to their ability to handle large-scale applications and big datasets. In the last decades, researchers have made substantial effort to study the theoretical performance of SGD and its shuffling variants. However, only limited work has investigated its shuffling momentum variants, including shuffling heavy-ball momentum schemes for non-convex problems and Nesterov's momentum for convex settings. In this work, we extend the analysis of the shuffling momentum gradient method developed in [Tran et al (2021)] to both finite-sum convex and strongly convex optimization problems. We provide the first analysis of shuffling momentum-based methods for the strongly convex setting, attaining a convergence rate of $O(1/nT^2)$, where $n$ is the number of samples and $T$ is the number of training epochs. Our analysis is a state-of-the-art, matching the best rates of existing shuffling stochastic gradient algorithms in the literature.

We study the Densest Subgraph (DSG) problem under the additional constraint of differential privacy. DSG is a fundamental theoretical question which plays a central role in graph analytics, and so privacy is a natural requirement. But all known private algorithms for Densest Subgraph lose constant multiplicative factors as well as relative large (at least $\log^2 n$) additive factors, despite the existence of non-private exact algorithms. We show that, perhaps surprisingly, these losses are not necessary: in both the classic differential privacy model and the LEDP model (local edge differential privacy, introduced recently by Dhulipala et al. [FOCS 2022]), we give $(\epsilon, \delta)$-differentially private algorithms with no multiplicative loss whatsoever. In other words, the loss is purely additive. Moreover, our additive losses improve the best-known previous additive loss (in any version of differential privacy) when $1/\delta$ is at least polynomial in $n$, and are almost tight: in the centralized setting, our additive loss is $O(\log n /\epsilon)$ while there is a known lower bound of $\Omega(\sqrt{\log n / \epsilon})$. Additionally, we give a different algorithm that is $\epsilon$-differentially private in the LEDP model which achieves a multiplicative ratio arbitrarily close to $2$, along with an additional additive factor. This improves over the previous multiplicative $4$-approximation in the LEDP model. Finally, we conclude with extensions of our techniques to both the node-weighted and the directed versions of the problem.

Convex optimization encompasses a wide range of optimization problems, containing many efficiently solvable subclasses. Interior point methods are currently the state-of-the-art approach for solving such problems, particularly effective for classes like semidefinite programming, quadratic programming, and geometric programming. However, their success hinges on the construction of self-concordant barrier functions for the feasible sets. In this work, we introduce an alternative method for tackling convex optimization problems, employing a homotopy. With this technique, the feasible set of a trivial optimization problem is continuously transformed into the target one, while tracking the solutions. We conduct an analysis of this approach, focusing on its application to semidefinite programs, hyperbolic programs, and convex optimization problems with a single convexity constraint. Moreover, we demonstrate that our approach numerically outperforms state-of-the-art methods in several interesting cases.

When deploying segmentation models in practice, it is critical to evaluate their behaviors in varied and complex scenes. Different from the previous evaluation paradigms only in consideration of global attribute variations (e.g. adverse weather), we investigate both local and global attribute variations for robustness evaluation. To achieve this, we construct a mask-preserved attribute editing pipeline to edit visual attributes of real images with precise control of structural information. Therefore, the original segmentation labels can be reused for the edited images. Using our pipeline, we construct a benchmark covering both object and image attributes (e.g. color, material, pattern, style). We evaluate a broad variety of semantic segmentation models, spanning from conventional close-set models to recent open-vocabulary large models on their robustness to different types of variations. We find that both local and global attribute variations affect segmentation performances, and the sensitivity of models diverges across different variation types. We argue that local attributes have the same importance as global attributes, and should be considered in the robustness evaluation of segmentation models. Code: //github.com/PRIS-CV/Pascal-EA.

Rejection sampling methods have recently been proposed to improve the performance of discriminator-based generative models. However, these methods are only optimal under an unlimited sampling budget, and are usually applied to a generator trained independently of the rejection procedure. We first propose an Optimal Budgeted Rejection Sampling (OBRS) scheme that is provably optimal with respect to \textit{any} $f$-divergence between the true distribution and the post-rejection distribution, for a given sampling budget. Second, we propose an end-to-end method that incorporates the sampling scheme into the training procedure to further enhance the model's overall performance. Through experiments and supporting theory, we show that the proposed methods are effective in significantly improving the quality and diversity of the samples.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

北京阿比特科技有限公司