Stochastic optimization is one of the central problems in Machine Learning and Theoretical Computer Science. In the standard model, the algorithm is given a fixed distribution known in advance. In practice though, one may acquire at a cost extra information to make better decisions. In this paper, we study how to buy information for stochastic optimization and formulate this question as an online learning problem. Assuming the learner has an oracle for the original optimization problem, we design a $2$-competitive deterministic algorithm and a $e/(e-1)$-competitive randomized algorithm for buying information. We show that this ratio is tight as the problem is equivalent to a robust generalization of the ski-rental problem, which we call super-martingale stopping. We also consider an adaptive setting where the learner can choose to buy information after taking some actions for the underlying optimization problem. We focus on the classic optimization problem, Min-Sum Set Cover, where the goal is to quickly find an action that covers a given request drawn from a known distribution. We provide an $8$-competitive algorithm running in polynomial time that chooses actions and decides when to buy information about the underlying request.
Monte Carlo methods represent a cornerstone of computer science. They allow to sample high dimensional distribution functions in an efficient way. In this paper we consider the extension of Automatic Differentiation (AD) techniques to Monte Carlo process, addressing the problem of obtaining derivatives (and in general, the Taylor series) of expectation values. Borrowing ideas from the lattice field theory community, we examine two approaches. One is based on reweighting while the other represents an extension of the Hamiltonian approach typically used by the Hybrid Monte Carlo (HMC) and similar algorithms. We show that the Hamiltonian approach can be understood as a change of variables of the reweighting approach, resulting in much reduced variances of the coefficients of the Taylor series. This work opens the door to find other variance reduction techniques for derivatives of expectation values.
We consider the problem of learning control policies in discrete-time stochastic systems which guarantee that the system stabilizes within some specified stabilization region with probability~$1$. Our approach is based on the novel notion of stabilizing ranking supermartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the limitation of methods proposed in previous works whose applicability is restricted to systems in which the stabilizing region cannot be left once entered under any control policy. We present a learning procedure that learns a control policy together with an sRSM that formally certifies probability~$1$ stability, both learned as neural networks. We show that this procedure can also be adapted to formally verifying that, under a given Lipschitz continuous control policy, the stochastic system stabilizes within some stabilizing region with probability~$1$. Our experimental evaluation shows that our learning procedure can successfully learn provably stabilizing policies in practice.
We study the following two related problems. The first is to determine to what error an arbitrary zonoid in $\mathbb{R}^{d+1}$ can be approximated in the Hausdorff distance by a sum of $n$ line segments. The second is to determine optimal approximation rates in the uniform norm for shallow ReLU$^k$ neural networks on their variation spaces. The first of these problems has been solved for $d\neq 2,3$, but when $d=2,3$ a logarithmic gap between the best upper and lower bounds remains. We close this gap, which completes the solution in all dimensions. For the second problem, our techniques significantly improve upon existing approximation rates when $k\geq 1$, and enable uniform approximation of both the target function and its derivatives.
In this work, we explore a framework for contextual decision-making to study how the relevance and quantity of past data affects the performance of a data-driven policy. We analyze a contextual Newsvendor problem in which a decision-maker needs to trade-off between an underage and an overage cost in the face of uncertain demand. We consider a setting in which past demands observed under ``close by'' contexts come from close by distributions and analyze the performance of data-driven algorithms through a notion of context-dependent worst-case expected regret. We analyze the broad class of Weighted Empirical Risk Minimization (WERM) policies which weigh past data according to their similarity in the contextual space. This class includes classical policies such as ERM, k-Nearest Neighbors and kernel-based policies. Our main methodological contribution is to characterize exactly the worst-case regret of any WERM policy on any given configuration of contexts. To the best of our knowledge, this provides the first understanding of tight performance guarantees in any contextual decision-making problem, with past literature focusing on upper bounds via concentration inequalities. We instead take an optimization approach, and isolate a structure in the Newsvendor loss function that allows to reduce the infinite-dimensional optimization problem over worst-case distributions to a simple line search. This in turn allows us to unveil fundamental insights that were obfuscated by previous general-purpose bounds. We characterize actual guaranteed performance as a function of the contexts, as well as granular insights on the learning curve of algorithms.
The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper begins with a derivation of the latent variable proximal point (LVPP) method: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive (Bayesian) barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
Stochastic gradient descent (SGD) is the simplest deep learning optimizer with which to train deep neural networks. While SGD can use various learning rates, such as constant or diminishing rates, the previous numerical results showed that SGD performs better than other deep learning optimizers using when it uses learning rates given by line search methods. In this paper, we perform a convergence analysis on SGD with a learning rate given by an Armijo line search for nonconvex optimization. The analysis indicates that the upper bound of the expectation of the squared norm of the full gradient becomes small when the number of steps and the batch size are large. Next, we show that, for SGD with the Armijo-line-search learning rate, the number of steps needed for nonconvex optimization is a monotone decreasing convex function of the batch size; that is, the number of steps needed for nonconvex optimization decreases as the batch size increases. Furthermore, we show that the stochastic first-order oracle (SFO) complexity, which is the stochastic gradient computation cost, is a convex function of the batch size; that is, there exists a critical batch size that minimizes the SFO complexity. Finally, we provide numerical results that support our theoretical results. The numerical results indicate that the number of steps needed for training deep neural networks decreases as the batch size increases and that there exist the critical batch sizes that can be estimated from the theoretical results.
The Information Bottleneck (IB) is a method of lossy compression of relevant information. Its rate-distortion (RD) curve describes the fundamental tradeoff between input compression and the preservation of relevant information embedded in the input. However, it conceals the underlying dynamics of optimal input encodings. We argue that these typically follow a piecewise smooth trajectory when input information is being compressed, as recently shown in RD. These smooth dynamics are interrupted when an optimal encoding changes qualitatively, at a bifurcation. By leveraging the IB's intimate relations with RD, we provide substantial insights into its solution structure, highlighting caveats in its finite-dimensional treatments. Sub-optimal solutions are seen to collide or exchange optimality at its bifurcations. Despite the acceptance of the IB and its applications, there are surprisingly few techniques to solve it numerically, even for finite problems whose distribution is known. We derive anew the IB's first-order Ordinary Differential Equation, which describes the dynamics underlying its optimal tradeoff curve. To exploit these dynamics, we not only detect IB bifurcations but also identify their type in order to handle them accordingly. Rather than approaching the IB's optimal curve from sub-optimal directions, the latter allows us to follow a solution's trajectory along the optimal curve under mild assumptions. We thereby translate an understanding of IB bifurcations into a surprisingly accurate numerical algorithm.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.