亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Teaching dexterity to multi-fingered robots has been a longstanding challenge in robotics. Most prominent work in this area focuses on learning controllers or policies that either operate on visual observations or state estimates derived from vision. However, such methods perform poorly on fine-grained manipulation tasks that require reasoning about contact forces or about objects occluded by the hand itself. In this work, we present T-Dex, a new approach for tactile-based dexterity, that operates in two phases. In the first phase, we collect 2.5 hours of play data, which is used to train self-supervised tactile encoders. This is necessary to bring high-dimensional tactile readings to a lower-dimensional embedding. In the second phase, given a handful of demonstrations for a dexterous task, we learn non-parametric policies that combine the tactile observations with visual ones. Across five challenging dexterous tasks, we show that our tactile-based dexterity models outperform purely vision and torque-based models by an average of 1.7X. Finally, we provide a detailed analysis on factors critical to T-Dex including the importance of play data, architectures, and representation learning.

相關內容

Many problems in robotics, such as estimating the state from noisy sensor data or aligning two LiDAR point clouds, can be posed and solved as least-squares problems. Unfortunately, vanilla nonminimal solvers for least-squares problems are notoriously sensitive to outliers. As such, various robust loss functions have been proposed to reduce the sensitivity to outliers. Examples of loss functions include pseudo-Huber, Cauchy, and Geman-McClure. Recently, these loss functions have been generalized into a single loss function that enables the best loss function to be found adaptively based on the distribution of the residuals. However, even with the generalized robust loss function, most nonminimal solvers can only be solved locally given a prior state estimate due to the nonconvexity of the problem. The first contribution of this paper is to combine graduated nonconvexity (GNC) with the generalized robust loss function to solve least-squares problems without a prior state estimate and without the need to specify a loss function. Moreover, existing loss functions, including the generalized loss function, are based on Gaussian-like distribution. However, residuals are often defined as the squared norm of a multivariate error and distributed in a Chi-like fashion. The second contribution of this paper is to apply a norm-aware adaptive robust loss function within a GNC framework. This leads to additional robustness when compared with state-of-the-art methods. Simulations and experiments demonstrate that the proposed approach is more robust and yields faster convergence times compared to other GNC formulations.

Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters. High complexity of NN, if unbounded or unconstrained, might unpredictably cause severe issues including over-fitting, loss of generalization power, and unbearable cost of hardware. In this work, we propose a general compression scheme that significantly reduces the variational parameters of NN by encoding them to multi-layer tensor networks (TN's) that contain exponentially-fewer free parameters. Superior compression performance of our scheme is demonstrated on several widely-recognized NN's (FC-2, LeNet-5, and VGG-16) and datasets (MNIST and CIFAR-10), surpassing the state-of-the-art method based on shallow tensor networks. For instance, about 10 million parameters in the three convolutional layers of VGG-16 are compressed in TN's with just $632$ parameters, while the testing accuracy on CIFAR-10 is surprisingly improved from $81.14\%$ by the original NN to $84.36\%$ after compression. Our work suggests TN as an exceptionally efficient mathematical structure for representing the variational parameters of NN's, which superiorly exploits the compressibility than the simple multi-way arrays.

The Network Revenue Management (NRM) problem is a well-known challenge in dynamic decision-making under uncertainty. In this problem, fixed resources must be allocated to serve customers over a finite horizon, while customers arrive according to a stochastic process. The typical NRM model assumes that customer arrivals are independent over time. However, in this paper, we explore a more general setting where customer arrivals over different periods can be correlated. We propose a new model that assumes the existence of a system state, which determines customer arrivals for the current period. This system state evolves over time according to a time-inhomogeneous Markov chain. Our model can be used to represent correlation in various settings and synthesizes previous literature on correlation models. To solve the NRM problem under our correlated model, we derive a new linear programming (LP) approximation of the optimal policy. Our approximation provides a tighter upper bound on the total expected value collected by the optimal policy than existing upper bounds. We use our LP to develop a new bid price policy, which computes bid prices for each system state and time period in a backward induction manner. The decision is then made by comparing the reward of the customer against the associated bid prices. Our policy guarantees to collect at least $1/(1+L)$ fraction of the total reward collected by the optimal policy, where $L$ denotes the maximum number of resources required by a customer. In summary, our work presents a new model for correlated customer arrivals in the NRM problem and provides an LP approximation for solving the problem under this model. We derive a new bid price policy and provides a theoretical guarantee on the performance of the policy.

For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.

Recent advancements in Large Language Models (LLMs) harness linguistic associations in vast natural language data for practical applications. However, their ability to understand the physical world using only language data remains a question. After reviewing existing protocols, we explore this question using a novel and tightly controlled reasoning test (ART) and compare human norms against versions of GPT-3. Our findings highlight the categories of common-sense relations models that could learn directly from data and areas of weakness. GPT-3 offers evidence for verbal reasoning on a par with human subjects for several relations including Synonymy, Antonymy, and Default inheritance, Without reinforcement learning from human judgements, it appears GPT-3 performs at the lower end of the reference interval for Has-part and Contained-in. Weaknesses were observed also in affordance characteristics through Necessary-quality, Order-of-size and Order-of-intensity. Combining LLMs with symbolic world grounding is a promising direction to address associative learning.

Most invariance-based self-supervised methods rely on single object-centric images (e.g., ImageNet images) for pretraining, learning invariant representations from geometric transformations. However, when images are not object-centric, the semantics of the image can be significantly altered due to cropping. Furthermore, as the model becomes insensitive to geometric transformations, it may struggle to capture location information. For this reason, we propose a Geometric Transformation Sensitive Architecture designed to learn features that are sensitive to geometric transformations, specifically focusing on four-fold rotation, random crop, and multi-crop. Our method encourages the student to be sensitive by using targets that are sensitive to those transforms via pooling and rotating of the teacher feature map and predicting rotation. Additionally, as training insensitively to multi-crop encourages local-to-global correspondence, the model can capture long-term dependencies. We use patch correspondence loss to encourage correspondence between patches with similar features, instead of enforcing correspondence between views of the image. This approach allows us to capture long-term dependencies in a more appropriate way. Our approach demonstrates improved performance when using non-object-centric images as pretraining data compared to other methods that learn geometric transformation-insensitive representations. We surpass the DINO baseline in tasks including image classification, semantic segmentation, detection, and instance segmentation with improvements of 4.9 $Top-1 Acc$, 3.3 $mIoU$, 3.4 $AP^b$, and 2.7 $AP^m$. Code and pretrained models are publicly available at: //github.com/bok3948/GTSA

Partially-supervised instance segmentation is a task which requests segmenting objects from novel unseen categories via learning on limited seen categories with annotated masks thus eliminating demands of heavy annotation burden. The key to addressing this task is to build an effective class-agnostic mask segmentation model. Unlike previous methods that learn such models only on seen categories, in this paper, we propose a new method, named ContrastMask, which learns a mask segmentation model on both seen and unseen categories under a unified pixel-level contrastive learning framework. In this framework, annotated masks of seen categories and pseudo masks of unseen categories serve as a prior for contrastive learning, where features from the mask regions (foreground) are pulled together, and are contrasted against those from the background, and vice versa. Through this framework, feature discrimination between foreground and background is largely improved, facilitating learning of the class-agnostic mask segmentation model. Exhaustive experiments on the COCO dataset demonstrate the superiority of our method, which outperforms previous state-of-the-arts.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.

北京阿比特科技有限公司