Machine translation (MT) models are known to suffer from gender bias, especially when translating into languages with extensive gendered morphology. Accordingly, they still fall short in using gender-inclusive language, also representative of non-binary identities. In this paper, we look at gender-inclusive neomorphemes, neologistic elements that avoid binary gender markings as an approach towards fairer MT. In this direction, we explore prompting techniques with large language models (LLMs) to translate from English into Italian using neomorphemes. So far, this area has been under-explored due to its novelty and the lack of publicly available evaluation resources. We fill this gap by releasing Neo-GATE, a resource designed to evaluate gender-inclusive en-it translation with neomorphemes. With Neo-GATE, we assess four LLMs of different families and sizes and different prompt formats, identifying strengths and weaknesses of each on this novel task for MT.
Knowledge distillation (KD) is known as a promising solution to compress large language models (LLMs) via transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the two models so that more knowledge can be transferred. However, in the current white-box KD framework, the output distributions are from the respective output spaces of the two models, using their own prediction heads. We argue that the space discrepancy will lead to low similarity between the teacher model and the student model on both representation and distribution levels. Furthermore, this discrepancy also hinders the KD process between models with different vocabularies, which is common for current LLMs. To address these issues, we propose a dual-space knowledge distillation (DSKD) framework that unifies the output spaces of the two models for KD. On the basis of DSKD, we further develop a cross-model attention mechanism, which can automatically align the representations of the two models with different vocabularies. Thus, our framework is not only compatible with various distance functions for KD (e.g., KL divergence) like the current framework, but also supports KD between any two LLMs regardless of their vocabularies. Experiments on task-agnostic instruction-following benchmarks show that DSKD significantly outperforms the current white-box KD framework with various distance functions, and also surpasses existing KD methods for LLMs with different vocabularies.
Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications. However, the deployment of these models is constrained by high inference time in multilingual settings. To mitigate this challenge, this paper explores a training recipe of an assistant model in speculative decoding, which are leveraged to draft and-then its future tokens are verified by the target LLM. We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup of inference time compared to the previous methods. We validate these models across various languages in inference time, out-of-domain speedup, and GPT-4o evaluation.
Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety.
Multilingual knowledge editing (MKE) aims to simultaneously revise factual knowledge across multilingual languages within large language models (LLMs). However, most existing MKE methods just adapt existing monolingual editing methods to multilingual scenarios, overlooking the deep semantic connections of the same factual knowledge between different languages, thereby limiting edit performance. To address this issue, we first investigate how LLMs represent multilingual factual knowledge and discover that the same factual knowledge in different languages generally activates a shared set of neurons, which we call language-agnostic factual neurons. These neurons represent the semantic connections between multilingual knowledge and are mainly located in certain layers. Inspired by this finding, we propose a new MKE method by locating and modifying Language-Agnostic Factual Neurons (LAFN) to simultaneously edit multilingual knowledge. Specifically, we first generate a set of paraphrases for each multilingual knowledge to be edited to precisely locate the corresponding language-agnostic factual neurons. Then we optimize the update values for modifying these located neurons to achieve simultaneous modification of the same factual knowledge in multiple languages. Experimental results on Bi-ZsRE and MzsRE benchmarks demonstrate that our method outperforms existing MKE methods and achieves remarkable edit performance, indicating the importance of considering the semantic connections among multilingual knowledge.
Large language models (LLMs) have advanced to a point that even humans have difficulty discerning whether a text was generated by another human, or by a computer. However, knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness, and has applications in many domains including detecting fraud and academic dishonesty, as well as combating the spread of misinformation and political propaganda. The task of AI-generated text (AIGT) detection is therefore both very challenging, and highly critical. In this survey, we summarize state-of-the art approaches to AIGT detection, including watermarking, statistical and stylistic analysis, and machine learning classification. We also provide information about existing datasets for this task. Synthesizing the research findings, we aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios, and to make practical recommendations for future work towards this significant technical and societal challenge.
Large language models (LLMs) are increasingly being used in human-centered social scientific tasks, such as data annotation, synthetic data creation, and engaging in dialog. However, these tasks are highly subjective and dependent on human factors, such as one's environment, attitudes, beliefs, and lived experiences. Thus, employing LLMs (which do not have such human factors) in these tasks may result in a lack of variation in data, failing to reflect the diversity of human experiences. In this paper, we examine the role of prompting LLMs with human-like personas and asking the models to answer as if they were a specific human. This is done explicitly, with exact demographics, political beliefs, and lived experiences, or implicitly via names prevalent in specific populations. The LLM personas are then evaluated via (1) subjective annotation task (e.g., detecting toxicity) and (2) a belief generation task, where both tasks are known to vary across human factors. We examine the impact of explicit vs. implicit personas and investigate which human factors LLMs recognize and respond to. Results show that LLM personas show mixed results when reproducing known human biases, but generate generally fail to demonstrate implicit biases. We conclude that LLMs lack the intrinsic cognitive mechanisms of human thought, while capturing the statistical patterns of how people speak, which may restrict their effectiveness in complex social science applications.
Gender bias in text corpora used in various natural language processing (NLP) contexts, such as for training large language models (LLMs), can lead to the perpetuation and amplification of societal inequalities. This is particularly pronounced in gendered languages like Spanish or French, where grammatical structures inherently encode gender, making the bias analysis more challenging. Existing methods designed for English are inadequate for this task due to the intrinsic linguistic differences between English and gendered languages. This paper introduces a novel methodology that leverages the contextual understanding capabilities of LLMs to quantitatively analyze gender representation in Spanish corpora. By utilizing LLMs to identify and classify gendered nouns and pronouns in relation to their reference to human entities, our approach provides a nuanced analysis of gender biases. We empirically validate our method on four widely-used benchmark datasets, uncovering significant gender disparities with a male-to-female ratio ranging from 4:1 to 6:1. These findings demonstrate the value of our methodology for bias quantification in gendered languages and suggest its application in NLP, contributing to the development of more equitable language technologies.
Large language models (LLMs) iteratively generate text token by token, with memory usage increasing with the length of generated token sequences. The unpredictability of generation lengths makes it difficult to estimate the time and memory needed to process requests, posing a challenge for effective request scheduling. Conventional sequence-level scheduling (SLS) serves requests in a first-come first-served (FCFS) manner with static batching where requests with short generation lengths are delayed until those with long ones have finished generation, which hurts computational efficiency. Besides, to avoid out-of-memory (OOM) errors, SLS batches requests with a small batch size, which limits throughput. Recently proposed iteration-level scheduling (ILS) enhances computational efficiency with continuous batching to return completed requests timely and dynamically add new requests for processing. However, many ILS schedulers limit the number of parallel-processing requests to avoid OOM errors while achieving a fast inference speed, which compromises throughput. Moreover, existing SLS and ILS schedulers fail to balance the workload across multiple deployed LLM instances. To tackle these challenges, we propose slice-level scheduling (SCLS). By splitting the predefined maximal generation length limit into slices and serving batches slice by slice, it provides a precise range of serving time and memory usage for batched requests, laying the foundation for effective scheduling. Experiments confirm that compared with SLS and ILS schedulers, SCLS can improve throughput by up to 315.8% and greatly mitigate load imbalance with proposed batching and offloading algorithms.
Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains.
Large language models (LLMs) can adapt to new tasks through in-context learning (ICL) based on a few examples presented in dialogue history without any model parameter update. Despite such convenience, the performance of ICL heavily depends on the quality of the in-context examples presented, which makes the in-context example selection approach a critical choice. This paper proposes a novel Bayesian in-Context example Selection method (ByCS) for ICL. Extending the inference probability conditioned on in-context examples based on Bayes' theorem, ByCS focuses on the inverse inference conditioned on test input. Following the assumption that accurate inverse inference probability (likelihood) will result in accurate inference probability (posterior), in-context examples are selected based on their inverse inference results. Diverse and extensive cross-tasking and cross-modality experiments are performed with speech, text, and image examples. Experimental results show the efficacy and robustness of our ByCS method on various models, tasks and modalities.