亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the problem of Byzantine fault-tolerance in distributed multi-agent optimization. In this problem, each agent has a local cost function, and in the fault-free case, the goal is to design a distributed algorithm that allows all the agents to find a minimum point of all the agents' aggregate cost function. We consider a scenario where some agents might be Byzantine faulty that renders the original goal of computing a minimum point of all the agents' aggregate cost vacuous. A more reasonable objective for an algorithm in this scenario is to allow all the non-faulty agents to compute the minimum point of only the non-faulty agents' aggregate cost. Prior work shows that if there are up to $f$ (out of $n$) Byzantine agents then a minimum point of the non-faulty agents' aggregate cost can be computed exactly if and only if the non-faulty agents' costs satisfy a certain redundancy property called $2f$-redundancy. However, $2f$-redundancy is an ideal property that can be satisfied only in systems free from noise or uncertainties, which can make the goal of exact fault-tolerance unachievable in some applications. Thus, we introduce the notion of $(f,\epsilon)$-resilience, a generalization of exact fault-tolerance wherein the objective is to find an approximate minimum point of the non-faulty aggregate cost, with $\epsilon$ accuracy. This approximate fault-tolerance can be achieved under a weaker condition that is easier to satisfy in practice, compared to $2f$-redundancy. We obtain necessary and sufficient conditions for achieving $(f,\epsilon)$-resilience characterizing the correlation between relaxation in redundancy and approximation in resilience. In case when the agents' cost functions are differentiable, we obtain conditions for $(f,\epsilon)$-resilience of the distributed gradient-descent method when equipped with robust gradient aggregation.

相關內容

We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the $L$ most recent intervals, for some integer $L$. We give the following results: - In the unit-length intervals case, we give a $2$-approximation sliding window algorithm with space $\tilde{\mathrm{O}}(|OPT|)$, and we show that any sliding window algorithm that computes a $(2-\varepsilon)$-approximation requires space $\Omega(L)$, for any $\varepsilon > 0$. - In the arbitrary-length case, we give a $(\frac{11}{3}+\varepsilon)$-approximation sliding window algorithm with space $\tilde{\mathrm{O}}(|OPT|)$, for any constant $\varepsilon > 0$, which constitutes our main result. We also show that space $\Omega(L)$ is needed for algorithms that compute a $(2.5-\varepsilon)$-approximation, for any $\varepsilon > 0$. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass $2$-approximation streaming algorithm by Cabello and P\'{e}rez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a $(4+\varepsilon)$-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Pilot contamination is a critical issue in distributed massive MIMO networks, where the reuse of pilot sequences due to limited availability of orthogonal pilots for channel estimation leads to performance degradation. In this work, we propose a novel distributed pilot assignment scheme to effectively mitigate the impact of pilot contamination. Our proposed scheme not only reduces signaling overhead, but it also enhances fault-tolerance. Extensive numerical simulations are conducted to evaluate the performance of the proposed scheme. Our results establish that the proposed scheme outperforms existing centralized and distributed schemes in terms of mitigating pilot contamination and significantly enhancing network throughput.

This paper tackles the problem of passive gaze estimation using both event and frame data. Considering the inherently different physiological structures, it is intractable to accurately estimate gaze purely based on a given state. Thus, we reformulate gaze estimation as the quantification of the state shifting from the current state to several prior registered anchor states. Specifically, we propose a two-stage learning-based gaze estimation framework that divides the whole gaze estimation process into a coarse-to-fine approach involving anchor state selection and final gaze location. Moreover, to improve the generalization ability, instead of learning a large gaze estimation network directly, we align a group of local experts with a student network, where a novel denoising distillation algorithm is introduced to utilize denoising diffusion techniques to iteratively remove inherent noise in event data. Extensive experiments demonstrate the effectiveness of the proposed method, which surpasses state-of-the-art methods by a large margin of 15$\%$. The code will be publicly available at //github.com/jdjdli/Denoise_distill_EF_gazetracker.

Defeasibility in causal reasoning implies that the causal relationship between cause and effect can be strengthened or weakened. Namely, the causal strength between cause and effect should increase or decrease with the incorporation of strengthening arguments (supporters) or weakening arguments (defeaters), respectively. However, existing works ignore defeasibility in causal reasoning and fail to evaluate existing causal strength metrics in defeasible settings. In this work, we present $\delta$-CAUSAL, the first benchmark dataset for studying defeasibility in causal reasoning. $\delta$-CAUSAL includes around 11K events spanning ten domains, featuring defeasible causality pairs, i.e., cause-effect pairs accompanied by supporters and defeaters. We further show current causal strength metrics fail to reflect the change of causal strength with the incorporation of supporters or defeaters in $\delta$-CAUSAL. To this end, we propose CESAR (Causal Embedding aSsociation with Attention Rating), a metric that measures causal strength based on token-level causal relationships. CESAR achieves a significant 69.7% relative improvement over existing metrics, increasing from 47.2% to 80.1% in capturing the causal strength change brought by supporters and defeaters. We further demonstrate even Large Language Models (LLMs) like GPT-3.5 still lag 4.5 and 10.7 points behind humans in generating supporters and defeaters, emphasizing the challenge posed by $\delta$-CAUSAL.

We study the differentially private (DP) empirical risk minimization (ERM) problem under the semi-sensitive DP setting where only some features are sensitive. This generalizes the Label DP setting where only the label is sensitive. We give improved upper and lower bounds on the excess risk for DP-ERM. In particular, we show that the error only scales polylogarithmically in terms of the sensitive domain size, improving upon previous results that scale polynomially in the sensitive domain size (Ghazi et al., 2021).

For a control problem with multiple conflicting objectives, there exists a set of Pareto-optimal policies called the Pareto set instead of a single optimal policy. When a multi-objective control problem is continuous and complex, traditional multi-objective reinforcement learning (MORL) algorithms search for many Pareto-optimal deep policies to approximate the Pareto set, which is quite resource-consuming. In this paper, we propose a simple and resource-efficient MORL algorithm that learns a continuous representation of the Pareto set in a high-dimensional policy parameter space using a single hypernet. The learned hypernet can directly generate various well-trained policy networks for different user preferences. We compare our method with two state-of-the-art MORL algorithms on seven multi-objective continuous robot control problems. Experimental results show that our method achieves the best overall performance with the least training parameters. An interesting observation is that the Pareto set is well approximated by a curved line or surface in a high-dimensional parameter space. This observation will provide insight for researchers to design new MORL algorithms.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司