亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Previous results have shown that a two time-scale update rule (TTUR) using different learning rates, such as different constant rates or different decaying rates, is useful for training generative adversarial networks (GANs) in theory and in practice. Moreover, not only the learning rate but also the batch size is important for training GANs with TTURs and they both affect the number of steps needed for training. This paper studies the relationship between batch size and the number of steps needed for training GANs with TTURs based on constant learning rates. We theoretically show that, for a TTUR with constant learning rates, the number of steps needed to find stationary points of the loss functions of both the discriminator and generator decreases as the batch size increases and that there exists a critical batch size minimizing the stochastic first-order oracle (SFO) complexity. Then, we use the Fr'echet inception distance (FID) as the performance measure for training and provide numerical results indicating that the number of steps needed to achieve a low FID score decreases as the batch size increases and that the SFO complexity increases once the batch size exceeds the measured critical batch size. Moreover, we show that measured critical batch sizes are close to the sizes estimated from our theoretical results.

相關內容

This paper presents a novel approach for text/speech-driven animation of a photo-realistic head model based on blend-shape geometry, dynamic textures, and neural rendering. Training a VAE for geometry and texture yields a parametric model for accurate capturing and realistic synthesis of facial expressions from a latent feature vector. Our animation method is based on a conditional CNN that transforms text or speech into a sequence of animation parameters. In contrast to previous approaches, our animation model learns disentangling/synthesizing different acting-styles in an unsupervised manner, requiring only phonetic labels that describe the content of training sequences. For realistic real-time rendering, we train a U-Net that refines rasterization-based renderings by computing improved pixel colors and a foreground matte. We compare our framework qualitatively/quantitatively against recent methods for head modeling as well as facial animation and evaluate the perceived rendering/animation quality in a user-study, which indicates large improvements compared to state-of-the-art approaches

The problem Power Dominating Set (PDS) is motivated by the placement of phasor measurement units to monitor electrical networks. It asks for a minimum set of vertices in a graph that observes all remaining vertices by exhaustively applying two observation rules. Our contribution is twofold. First, we determine the parameterized complexity of PDS by proving it is $W[P]$-complete when parameterized with respect to the solution size. We note that it was only known to be $W[2]$-hard before. Our second and main contribution is a new algorithm for PDS that efficiently solves practical instances. Our algorithm consists of two complementary parts. The first is a set of reduction rules for PDS that can also be used in conjunction with previously existing algorithms. The second is an algorithm for solving the remaining kernel based on the implicit hitting set approach. Our evaluation on a set of power grid instances from the literature shows that our solver outperforms previous state-of-the-art solvers for PDS by more than one order of magnitude on average. Furthermore, our algorithm can solve previously unsolved instances of continental scale within a few minutes.

Few-shot knowledge graph completion (FKGC) task aims to predict unseen facts of a relation with few-shot reference entity pairs. Current approaches randomly select one negative sample for each reference entity pair to minimize a margin-based ranking loss, which easily leads to a zero-loss problem if the negative sample is far away from the positive sample and then out of the margin. Moreover, the entity should have a different representation under a different context. To tackle these issues, we propose a novel Relation-Aware Network with Attention-Based Loss (RANA) framework. Specifically, to better utilize the plentiful negative samples and alleviate the zero-loss issue, we strategically select relevant negative samples and design an attention-based loss function to further differentiate the importance of each negative sample. The intuition is that negative samples more similar to positive samples will contribute more to the model. Further, we design a dynamic relation-aware entity encoder for learning a context-dependent entity representation. Experiments demonstrate that RANA outperforms the state-of-the-art models on two benchmark datasets.

This paper studies the probability of error associated with the social machine learning framework, which involves an independent training phase followed by a cooperative decision-making phase over a graph. This framework addresses the problem of classifying a stream of unlabeled data in a distributed manner. We consider two kinds of classification tasks with limited observations in the prediction phase, namely, the statistical classification task and the single-sample classification task. For each task, we describe the distributed learning rule and analyze the probability of error accordingly. To do so, we first introduce a stronger consistent training condition that involves the margin distributions generated by the trained classifiers. Based on this condition, we derive an upper bound on the probability of error for both tasks, which depends on the statistical properties of the data and the combination policy used to combine the distributed classifiers. For the statistical classification problem, we employ the geometric social learning rule and conduct a non-asymptotic performance analysis. An exponential decay of the probability of error with respect to the number of unlabeled samples is observed in the upper bound. For the single-sample classification task, a distributed learning rule that functions as an ensemble classifier is constructed. An upper bound on the probability of error of this ensemble classifier is established.

Given tensors $\boldsymbol{\mathscr{A}}, \boldsymbol{\mathscr{B}}, \boldsymbol{\mathscr{C}}$ of size $m \times 1 \times n$, $m \times p \times 1$, and $1\times p \times n$, respectively, their Bhattacharya-Mesner (BM) product will result in a third order tensor of dimension $m \times p \times n$ and BM-rank of 1 (Mesner and Bhattacharya, 1990). Thus, if a third-order tensor can be written as a sum of a small number of such BM-rank 1 terms, this BM-decomposition (BMD) offers an implicitly compressed representation of the tensor. Therefore, in this paper, we give a generative model which illustrates that spatio-temporal video data can be expected to have low BM-rank. Then, we discuss non-uniqueness properties of the BMD and give an improved bound on the BM-rank of a third-order tensor. We present and study properties of an iterative algorithm for computing an approximate BMD, including convergence behavior and appropriate choices for starting guesses that allow for the decomposition of our spatial-temporal data into stationary and non-stationary components. Several numerical experiments show the impressive ability of our BMD algorithm to extract important temporal information from video data while simultaneously compressing the data. In particular, we compare our approach with dynamic mode decomposition (DMD): first, we show how the matrix-based DMD can be reinterpreted in tensor BMP form, then we explain why the low BM-rank decomposition can produce results with superior compression properties while simultaneously providing better separation of stationary and non-stationary features in the data. We conclude with a comparison of our low BM-rank decomposition to two other tensor decompositions, CP and the t-SVDM.

Differentially private mean estimation is an important building block in privacy-preserving algorithms for data analysis and machine learning. Though the trade-off between privacy and utility is well understood in the worst case, many datasets exhibit structure that could potentially be exploited to yield better algorithms. In this paper we present $\textit{Private Limit Adapted Noise (PLAN)}$, a family of differentially private algorithms for mean estimation in the setting where inputs are independently sampled from a distribution $\mathcal{D}$ over $\mathbf{R}^d$, with coordinate-wise standard deviations $\boldsymbol{\sigma} \in \mathbf{R}^d$. Similar to mean estimation under Mahalanobis distance, PLAN tailors the shape of the noise to the shape of the data, but unlike previous algorithms the privacy budget is spent non-uniformly over the coordinates. Under a concentration assumption on $\mathcal{D}$, we show how to exploit skew in the vector $\boldsymbol{\sigma}$, obtaining a (zero-concentrated) differentially private mean estimate with $\ell_2$ error proportional to $\|\boldsymbol{\sigma}\|_1$. Previous work has either not taken $\boldsymbol{\sigma}$ into account, or measured error in Mahalanobis distance $\unicode{x2013}$ in both cases resulting in $\ell_2$ error proportional to $\sqrt{d}\|\boldsymbol{\sigma}\|_2$, which can be up to a factor $\sqrt{d}$ larger. To verify the effectiveness of \algorithmname, we empirically evaluate accuracy on both synthetic and real world data.

The ability to reliably predict the future quality of a wireless channel, as seen by the media access control layer, is a key enabler to improve performance of future industrial networks that do not rely on wires. Knowing in advance how much channel behavior may change can speed up procedures for adaptively selecting the best channel, making the network more deterministic, reliable, and less energy-hungry, possibly improving device roaming capabilities at the same time. To this aim, popular approaches based on moving averages and regression were compared, using multiple key performance indicators, on data captured from a real Wi-Fi setup. Moreover, a simple technique based on a linear combination of outcomes from different techniques was presented and analyzed, to further reduce the prediction error, and some considerations about lower bounds on achievable errors have been reported. We found that the best model is the exponential moving average, which managed to predict the frame delivery ratio with a 2.10\% average error and, at the same time, has lower computational complexity and memory consumption than the other models we analyzed.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司