亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traumatic brain injury (TBI) can cause a range of cognitive and communication challenges that negatively affect social participation in both face-to-face interactions and computer-mediated communication. In particular, individuals with TBI report barriers that limit access to participation on social media platforms. To improve access to and use of social media for users with TBI, we introduce the Social Media Accessibility and Rehabilitation Toolkit (\textbf{SMART-TBI}). The toolkit includes five aids (Writing Aid, Interpretation Aid, Filter Mode, Focus Mode, and Facebook Customization) designed to address the cognitive and communicative needs of individuals with TBI. We asked eight users with moderate-severe TBI and five TBI rehabilitation experts to evaluate each aid. Our findings revealed potential benefits of aids and areas for improvement, including the need for psychological safety, privacy control, and balancing business and accessibility needs; and overall mixed reactions among the participants to AI-based aids.

相關內容

There have been rapid advancements in the capabilities of large language models (LLMs) in recent years, greatly revolutionizing the field of natural language processing (NLP) and artificial intelligence (AI) to understand and interact with human language. Therefore, in this work, we conduct a systematic investigation of the literature to identify the prominent themes and directions of LLM developments, impacts, and limitations. Our findings illustrate the aims, methodologies, limitations, and future directions of LLM research. It includes responsible development considerations, algorithmic improvements, ethical challenges, and societal implications of LLM development. Overall, this paper provides a rigorous and comprehensive overview of current research in LLM and identifies potential directions for future development. The article highlights the application areas that could have a positive impact on society along with the ethical considerations.

The popularisation of applying AI in businesses poses significant challenges relating to ethical principles, governance, and legal compliance. Although businesses have embedded AI into their day-to-day processes, they lack a unified approach for mitigating its potential risks. This paper introduces a framework ensuring that AI must be ethical, controllable, viable, and desirable. Balancing these factors ensures the design of a framework that addresses its trade-offs, such as balancing performance against explainability. A successful framework provides practical advice for businesses to meet regulatory requirements in sectors such as finance and healthcare, where it is critical to comply with standards like GPDR and the EU AI Act. Different case studies validate this framework by integrating AI in both academic and practical environments. For instance, large language models are cost-effective alternatives for generating synthetic opinions that emulate attitudes to environmental issues. These case studies demonstrate how having a structured framework could enhance transparency and maintain performance levels as shown from the alignment between synthetic and expected distributions. This alignment is quantified using metrics like Chi-test scores, normalized mutual information, and Jaccard indexes. Future research should explore the framework's empirical validation in diverse industrial settings further, ensuring the model's scalability and adaptability.

Despite being the most popular privacy-enhancing network, Tor is increasingly adopted by cybercriminals to obfuscate malicious traffic, hindering the identification of malware-related communications between compromised devices and Command and Control (C&C) servers. This malicious traffic can induce congestion and reduce Tor's performance, while encouraging network administrators to block Tor traffic. Recent research, however, demonstrates the potential for accurately classifying captured Tor traffic as malicious or benign. While existing efforts have addressed malware class identification, their performance remains limited, with micro-average precision and recall values around 70%. Accurately classifying specific malware classes is crucial for effective attack prevention and mitigation. Furthermore, understanding the unique patterns and attack vectors employed by different malware classes helps the development of robust and adaptable defence mechanisms. We utilise a multi-label classification technique based on Message-Passing Neural Networks, demonstrating its superiority over previous approaches such as Binary Relevance, Classifier Chains, and Label Powerset, by achieving micro-average precision (MAP) and recall (MAR) exceeding 90%. Compared to previous work, we significantly improve performance by 19.98%, 10.15%, and 59.21% in MAP, MAR, and Hamming Loss, respectively. Next, we employ Explainable Artificial Intelligence (XAI) techniques to interpret the decision-making process within these models. Finally, we assess the robustness of all techniques by crafting adversarial perturbations capable of manipulating classifier predictions and generating false positives and negatives.

While advertising has become commonplace in today's online interactions, there is a notable dearth of research investigating the extent to which browser fingerprinting is harnessed for user tracking and targeted advertising. Prior studies only measured whether fingerprinting-related scripts are being run on the websites but that in itself does not necessarily mean that fingerprinting is being used for the privacy-invasive purpose of online tracking because fingerprinting might be deployed for the defensive purposes of bot/fraud detection and user authentication. It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising. To understand the privacy-invasive use of fingerprinting for user tracking, this paper introduces a new framework ``FPTrace'' (fingerprinting-based tracking assessment and comprehensive evaluation framework) designed to identify alterations in advertisements resulting from adjustments in browser fingerprinting settings. Our approach involves emulating genuine user interactions, capturing advertiser bid data, and closely monitoring HTTP information. Using FPTrace we conduct a large-scale measurement study to identify whether browser fingerprinting is being used for the purpose of user tracking and ad targeting. The results we have obtained provide robust evidence supporting the utilization of browser fingerprinting for the purposes of advertisement tracking and targeting. This is substantiated by significant disparities in bid values and a reduction in HTTP records subsequent to changes in fingerprinting. In conclusion, our research unveils the widespread employment of browser fingerprinting in online advertising, prompting critical considerations regarding user privacy and data security within the digital advertising landscape.

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication, repetitive behavior, and sensory processing. One important research area in ASD is evaluating children's behavioral changes over time during treatment. The standard protocol with this objective is BOSCC, which involves dyadic interactions between a child and clinicians performing a pre-defined set of activities. A fundamental aspect of understanding children's behavior in these interactions is automatic speech understanding, particularly identifying who speaks and when. Conventional approaches in this area heavily rely on speech samples recorded from a spectator perspective, and there is limited research on egocentric speech modeling. In this study, we design an experiment to perform speech sampling in BOSCC interviews from an egocentric perspective using wearable sensors and explore pre-training Ego4D speech samples to enhance child-adult speaker classification in dyadic interactions. Our findings highlight the potential of egocentric speech collection and pre-training to improve speaker classification accuracy.

Estimating the Most Important Person (MIP) in any social event setup is a challenging problem mainly due to contextual complexity and scarcity of labeled data. Moreover, the causality aspects of MIP estimation are quite subjective and diverse. To this end, we aim to address the problem by annotating a large-scale `in-the-wild' dataset for identifying human perceptions about the `Most Important Person (MIP)' in an image. The paper provides a thorough description of our proposed Multimodal Large Language Model (MLLM) based data annotation strategy, and a thorough data quality analysis. Further, we perform a comprehensive benchmarking of the proposed dataset utilizing state-of-the-art MIP localization methods, indicating a significant drop in performance compared to existing datasets. The performance drop shows that the existing MIP localization algorithms must be more robust with respect to `in-the-wild' situations. We believe the proposed dataset will play a vital role in building the next-generation social situation understanding methods. The code and data is available at //github.com/surbhimadan92/MIP-GAF.

The ability of a brain or a neural network to efficiently learn depends crucially on both the task structure and the learning rule. Previous works have analyzed the dynamical equations describing learning in the relatively simplified context of the perceptron under assumptions of a student-teacher framework or a linearized output. While these assumptions have facilitated theoretical understanding, they have precluded a detailed understanding of the roles of the nonlinearity and input-data distribution in determining the learning dynamics, limiting the applicability of the theories to real biological or artificial neural networks. Here, we use a stochastic-process approach to derive flow equations describing learning, applying this framework to the case of a nonlinear perceptron performing binary classification. We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve and the forgetting curve as subsequent tasks are learned. In particular, we find that the input-data noise differently affects the learning speed under SL vs. RL, as well as determines how quickly learning of a task is overwritten by subsequent learning. Additionally, we verify our approach with real data using the MNIST dataset. This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.

Group activities are important behaviors in human society, providing personalized recommendations for groups is referred to as the group recommendation task. Existing methods can usually be categorized into two strategies to infer group preferences: 1) determining group preferences by aggregating members' personalized preferences, and 2) inferring group consensus by capturing group members' coherent decisions after common compromises. However, the former would suffer from the lack of group-level considerations, and the latter overlooks the fine-grained preferences of individual users. To this end, we propose a novel group recommendation method AlignGroup, which focuses on both group consensus and individual preferences of group members to infer the group decision-making. Specifically, AlignGroup explores group consensus through a well-designed hypergraph neural network that efficiently learns intra- and inter-group relationships. Moreover, AlignGroup innovatively utilizes a self-supervised alignment task to capture fine-grained group decision-making by aligning the group consensus with members' common preferences. Extensive experiments on two real-world datasets validate that our AlignGroup outperforms the state-of-the-art on both the group recommendation task and the user recommendation task, as well as outperforms the efficiency of most baselines.

Counterfactual reasoning, as a crucial manifestation of human intelligence, refers to making presuppositions based on established facts and extrapolating potential outcomes. Existing multimodal large language models (MLLMs) have exhibited impressive cognitive and reasoning capabilities, which have been examined across a wide range of Visual Question Answering (VQA) benchmarks. Nevertheless, how will existing MLLMs perform when faced with counterfactual questions? To answer this question, we first curate a novel \textbf{C}ounter\textbf{F}actual \textbf{M}ulti\textbf{M}odal reasoning benchmark, abbreviated as \textbf{CFMM}, to systematically assess the counterfactual reasoning capabilities of MLLMs. Our CFMM comprises six challenging tasks, each including hundreds of carefully human-labeled and GPT-generated counterfactual questions, to evaluate MLLM's counterfactual reasoning capabilities across diverse aspects. Through experiments, interestingly, we find that existing MLLMs prefer to believe what they see, but ignore the counterfactual presuppositions presented in the question, thereby leading to inaccurate responses. Furthermore, we evaluate a wide range of prevalent MLLMs on our proposed CFMM. The significant gap between their performance on our CFMM and that on several VQA benchmarks indicates that there is still considerable room for improvement in existing MLLMs toward approaching human-level intelligence. On the other hand, through boosting MLLMs performances on our CFMM in the future, potential avenues toward developing MLLMs with advanced intelligence can be explored.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司