Motivated by the importance of floating-point computations, we study the problem of securely and accurately summing many floating-point numbers. Prior work has focused on security absent accuracy or accuracy absent security, whereas our approach achieves both of them. Specifically, we show how to implement floating-point superaccumulators using secure multi-party computation techniques, so that a number of participants holding secret shares of floating-point numbers can accurately compute their sum while keeping the individual values private.
Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.
In this study, we explore the performance of a reconfigurable reflecting surface (RIS)-assisted transmit spatial modulation (SM) system for downlink transmission, wherein the deployment of RIS serves the purpose of blind area coverage within the channel. At the receiving end, we present three detectors, i.e., maximum likelihood (ML) detector, two-stage ML detection, and greedy detector to recover the transmitted signal. By utilizing the ML detector, we initially derive the conditional pair error probability expression for the proposed scheme. Subsequently, we leverage the central limit theorem (CLT) to obtain the probability density function of the combined channel. Following this, the Gaussian-Chebyshev quadrature method is applied to derive a closed-form expression for the unconditional pair error probability and establish the union tight upper bound for the average bit error probability (ABEP). Furthermore, we derive a closed-form expression for the ergodic capacity of the proposed RIS-SM scheme. Monte Carlo simulations are conducted not only to assess the complexity and reliability of the three detection algorithms but also to validate the results obtained through theoretical derivation results.
Motivated by the need for communication-efficient distributed learning, we investigate the method for compressing a unit norm vector into the minimum number of bits, while still allowing for some acceptable level of distortion in recovery. This problem has been explored in the rate-distortion/covering code literature, but our focus is exclusively on the "high-distortion" regime. We approach this problem in a worst-case scenario, without any prior information on the vector, but allowing for the use of randomized compression maps. Our study considers both biased and unbiased compression methods and determines the optimal compression rates. It turns out that simple compression schemes are nearly optimal in this scenario. While the results are a mix of new and known, they are compiled in this paper for completeness.
In this paper, we study the stochastic collocation (SC) methods for uncertainty quantification (UQ) in hyperbolic systems of nonlinear partial differential equations (PDEs). In these methods, the underlying PDEs are numerically solved at a set of collocation points in random space. A standard SC approach is based on a generalized polynomial chaos (gPC) expansion, which relies on choosing the collocation points based on the prescribed probability distribution and approximating the computed solution by a linear combination of orthogonal polynomials in the random variable. We demonstrate that this approach struggles to accurately capture discontinuous solutions, often leading to oscillations (Gibbs phenomenon) that deviate significantly from the physical solutions. We explore alternative SC methods, in which one can choose an arbitrary set of collocation points and employ shape-preserving splines to interpolate the solution in a random space. Our study demonstrates the effectiveness of spline-based collocation in accurately capturing and assessing uncertainties while suppressing oscillations. We illustrate the superiority of the spline-based collocation on two numerical examples, including the inviscid Burgers and shallow water equations.
Motivated by understanding and analysis of large-scale machine learning under heavy-tailed gradient noise, we study distributed optimization with gradient clipping, i.e., in which certain clipping operators are applied to the gradients or gradient estimates computed from local clients prior to further processing. While vanilla gradient clipping has proven effective in mitigating the impact of heavy-tailed gradient noises in non-distributed setups, it incurs bias that causes convergence issues in heterogeneous distributed settings. To address the inherent bias introduced by gradient clipping, we develop a smoothed clipping operator, and propose a distributed gradient method equipped with an error feedback mechanism, i.e., the clipping operator is applied on the difference between some local gradient estimator and local stochastic gradient. We establish that, for the first time in the strongly convex setting with heavy-tailed gradient noises that may not have finite moments of order greater than one, the proposed distributed gradient method's mean square error (MSE) converges to zero at a rate $O(1/t^\iota)$, $\iota \in (0, 1/2)$, where the exponent $\iota$ stays bounded away from zero as a function of the problem condition number and the first absolute moment of the noise and, in particular, is shown to be independent of the existence of higher order gradient noise moments $\alpha > 1$. Numerical experiments validate our theoretical findings.
To address the communication bottleneck challenge in distributed learning, our work introduces a novel two-stage quantization strategy designed to enhance the communication efficiency of distributed Stochastic Gradient Descent (SGD). The proposed method initially employs truncation to mitigate the impact of long-tail noise, followed by a non-uniform quantization of the post-truncation gradients based on their statistical characteristics. We provide a comprehensive convergence analysis of the quantized distributed SGD, establishing theoretical guarantees for its performance. Furthermore, by minimizing the convergence error, we derive optimal closed-form solutions for the truncation threshold and non-uniform quantization levels under given communication constraints. Both theoretical insights and extensive experimental evaluations demonstrate that our proposed algorithm outperforms existing quantization schemes, striking a superior balance between communication efficiency and convergence performance.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.