亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Convolutional Neural Networks (CNNs) compression is crucial to deploying these models in edge devices with limited resources. Existing channel pruning algorithms for CNNs have achieved plenty of success on complex models. They approach the pruning problem from various perspectives and use different metrics to guide the pruning process. However, these metrics mainly focus on the model's `outputs' or `weights' and neglect its `interpretations' information. To fill in this gap, we propose to address the channel pruning problem from a novel perspective by leveraging the interpretations of a model to steer the pruning process, thereby utilizing information from both inputs and outputs of the model. However, existing interpretation methods cannot get deployed to achieve our goal as either they are inefficient for pruning or may predict non-coherent explanations. We tackle this challenge by introducing a selector model that predicts real-time smooth saliency masks for pruned models. We parameterize the distribution of explanatory masks by Radial Basis Function (RBF)-like functions to incorporate geometric prior of natural images in our selector model's inductive bias. Thus, we can obtain compact representations of explanations to reduce the computational costs of our pruning method. We leverage our selector model to steer the network pruning by maximizing the similarity of explanatory representations for the pruned and original models. Extensive experiments on CIFAR-10 and ImageNet benchmark datasets demonstrate the efficacy of our proposed method. Our implementations are available at \url{//github.com/Alii-Ganjj/InterpretationsSteeredPruning}

相關內容

Communication and computation are often viewed as separate tasks. This approach is very effective from the perspective of engineering as isolated optimizations can be performed. On the other hand, there are many cases where the main interest is a function of the local information at the devices instead of the local information itself. For such scenarios, information theoretical results show that harnessing the interference in a multiple-access channel for computation, i.e., over-the-air computation (OAC), can provide a significantly higher achievable computation rate than the one with the separation of communication and computation tasks. Besides, the gap between OAC and separation in terms of computation rate increases with more participating nodes. Given this motivation, in this study, we provide a comprehensive survey on practical OAC methods. After outlining fundamentals related to OAC, we discuss the available OAC schemes with their pros and cons. We then provide an overview of the enabling mechanisms and relevant metrics to achieve reliable computation in the wireless channel. Finally, we summarize the potential applications of OAC and point out some future directions.

The deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications. However, computational resources for these networks are significantly constrained since they usually run on-call on edge devices. In this paper, we present BiFSMN, an accurate and extreme-efficient binary neural network for KWS. We first construct a High-frequency Enhancement Distillation scheme for the binarization-aware training, which emphasizes the high-frequency information from the full-precision network's representation that is more crucial for the optimization of the binarized network. Then, to allow the instant and adaptive accuracy-efficiency trade-offs at runtime, we also propose a Thinnable Binarization Architecture to further liberate the acceleration potential of the binarized network from the topology perspective. Moreover, we implement a Fast Bitwise Computation Kernel for BiFSMN on ARMv8 devices which fully utilizes registers and increases instruction throughput to push the limit of deployment efficiency. Extensive experiments show that BiFSMN outperforms existing binarization methods by convincing margins on various datasets and is even comparable with the full-precision counterpart (e.g., less than 3% drop on Speech Commands V1-12). We highlight that benefiting from the thinnable architecture and the optimized 1-bit implementation, BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware. Our code is released at //github.com/htqin/BiFSMN.

Recently, Model Predictive Contouring Control (MPCC) has arisen as the state-of-the-art approach for model-based agile flight. MPCC benefits from great flexibility in trading-off between progress maximization and path following at runtime without relying on globally optimized trajectories. However, finding the optimal set of tuning parameters for MPCC is challenging because (i) the full quadrotor dynamics are non-linear, (ii) the cost function is highly non-convex, and (iii) of the high dimensionality of the hyperparameter space. This paper leverages a probabilistic Policy Search method - Weighted Maximum Likelihood (WML)- to automatically learn the optimal objective for MPCC. WML is sample-efficient due to its closed-form solution for updating the learning parameters. Additionally, the data efficiency provided by the use of a model-based approach allows us to directly train in a high-fidelity simulator, which in turn makes our approach able to transfer zero-shot to the real world. We validate our approach in the real world, where we show that our method outperforms both the previous manually tuned controller and the state-of-the-art auto-tuning baseline reaching speeds of 75 km/h.

In this paper, we study unmanned aerial vehicles (UAVs) assisted wireless data aggregation (WDA) in multicluster networks, where multiple UAVs simultaneously perform different WDA tasks via over-the-air computation (AirComp) without terrestrial base stations. This work focuses on maximizing the minimum amount of WDA tasks performed among all clusters by optimizing the UAV's trajectory and transceiver design as well as cluster scheduling and association, while considering the WDA accuracy requirement. Such a joint design is critical for interference management in multi-cluster AirComp networks, via enhancing the signal quality between each UAV and its associated cluster for signal alignment and meanwhile reducing the inter-cluster interference between each UAV and its nonassociated clusters. Although it is generally challenging to optimally solve the formulated non-convex mixed-integer nonlinear programming, an efficient iterative algorithm as a compromise approach is developed by exploiting bisection and block coordinate descent methods, yielding an optimal transceiver solution in each iteration. The optimal binary variables and a suboptimal trajectory are obtained by using the dual method and successive convex approximation, respectively. Simulations show the considerable performance gains of the proposed design over benchmarks and the superiority of deploying multiple UAVs in increasing the number of performed tasks while reducing access delays.

The Work Disability Functional Assessment Battery (WD-FAB) is a multidimensional item response theory (IRT) instrument designed for assessing work-related mental and physical function based on responses to an item bank. In prior iterations it was developed using traditional means -- linear factorization, followed by statistical testing for item selection, and finally, calibration of disjoint unidimensional IRT models. As a result, the WD-FAB, like many other IRT instruments, is a posthoc model. In this manuscript, we derive an interpretable probabilistic autoencoder architecture that embeds as the decoder a Bayesian hierarchical model for self-consistently performing the following simultaneous tasks: scale factorization, item selection, parameter identification, and response scoring. This method obviates the linear factorization and null hypothesis statistical tests that are usually required for developing multidimensional IRT models, so that partitioning is consistent with the ultimate nonlinear factor model. We use the method on WD-FAB item responses and compare the resulting item discriminations to those obtained using the traditional method.

Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司