亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an innovative approach to enhancing the empirical risk minimization (ERM) process in model training through a refined reweighting scheme of the training data to enhance fairness. This scheme aims to uphold the sufficiency rule in fairness by ensuring that optimal predictors maintain consistency across diverse sub-groups. We employ a bilevel formulation to address this challenge, wherein we explore sample reweighting strategies. Unlike conventional methods that hinge on model size, our formulation bases generalization complexity on the space of sample weights. We discretize the weights to improve training speed. Empirical validation of our method showcases its effectiveness and robustness, revealing a consistent improvement in the balance between prediction performance and fairness metrics across various experiments.

相關內容

Deep neural networks (DNNs) typically employ an end-to-end (E2E) training paradigm which presents several challenges, including high GPU memory consumption, inefficiency, and difficulties in model parallelization during training. Recent research has sought to address these issues, with one promising approach being local learning. This method involves partitioning the backbone network into gradient-isolated modules and manually designing auxiliary networks to train these local modules. Existing methods often neglect the interaction of information between local modules, leading to myopic issues and a performance gap compared to E2E training. To address these limitations, we propose the Multilaminar Leap Augmented Auxiliary Network (MLAAN). Specifically, MLAAN comprises Multilaminar Local Modules (MLM) and Leap Augmented Modules (LAM). MLM captures both local and global features through independent and cascaded auxiliary networks, alleviating performance issues caused by insufficient global features. However, overly simplistic auxiliary networks can impede MLM's ability to capture global information. To address this, we further design LAM, an enhanced auxiliary network that uses the Exponential Moving Average (EMA) method to facilitate information exchange between local modules, thereby mitigating the shortsightedness resulting from inadequate interaction. The synergy between MLM and LAM has demonstrated excellent performance. Our experiments on the CIFAR-10, STL-10, SVHN, and ImageNet datasets show that MLAAN can be seamlessly integrated into existing local learning frameworks, significantly enhancing their performance and even surpassing end-to-end (E2E) training methods, while also reducing GPU memory consumption.

We propose a data-driven pressure distribution rendering method that uses the interpolation of experimentally obtained pressure values. The pressure data were collected using a pressure sensor array. The prediction was performed using linear interpolation, assuming that the pressure distribution is dependent on pushing displacement and contact angle. Leap Motion Controller was used to implement the prediction based on user input. The proposed prediction model was found to be fast and reproduce the measured data well.

We extend the behaviour of generic sample-based motion planners to support obstacle avoidance during long-range path following by introducing a new edge-cost metric paired with a curvilinear planning space. The resulting planner generates naturally smooth paths that avoid local obstacles while minimizing lateral path deviation to best exploit prior terrain knowledge from the reference path. In this adaptation, we explore the nuances of planning in the curvilinear configuration space and describe a mechanism for natural singularity handling to improve generality. We then shift our focus to the trajectory generation problem, proposing a novel Model Predictive Control (MPC) architecture to best exploit our path planner for improved obstacle avoidance. Through rigorous field robotics trials over 5 km, we compare our approach to the more common direct path-tracking MPC method and discuss the promise of these techniques for reliable long-term autonomous operations.

The immersed interface method (IIM) for models of fluid flow and fluid-structure interaction imposes jump conditions that capture stress discontinuities generated by forces that are concentrated along immersed boundaries. Most prior work using the IIM for fluid dynamic applications has focused on smooth interfaces, but boundaries with sharp features such as corners and edges can appear in practical analyses, particularly on engineered structures. The present study builds on our work to integrate finite element-type representations of interface geometries with the IIM. Initial realizations of this approach used a continuous Galerkin (CG) finite element discretization for the boundary, but as we show herein, these approaches generate large errors near sharp geometrical features. To overcome this difficulty, this study introduces an IIM approach using discontinuous Galerkin (DG) representation of the jump conditions. Numerical examples explore the impacts of different interface representations on accuracy for both smooth and sharp boundaries, particularly flows interacting with fixed interface configurations. We demonstrate that using a DG approach provides accuracy that is comparable to the CG method for smooth cases. Further, we identify a time step size restriction for the CG representation that is directly related to the sharpness of the geometry. In contrast, time step size restrictions imposed by DG representations are demonstrated to be insensitive to the presence of sharp features.

The emergence of models like GPTs, Claude, LLaMA, and Qwen has reshaped AI applications, presenting vast new opportunities across industries. Yet, the integration of tabular data remains notably underdeveloped, despite its foundational role in numerous real-world domains. This gap is critical for three main reasons. First, database or data warehouse data integration is essential for advanced applications; second, the vast and largely untapped resource of tabular data offers immense potential for analysis; and third, the business intelligence domain specifically demands adaptable, precise solutions that many current LLMs may struggle to provide. In response, we introduce TableGPT2, a model rigorously pre-trained and fine-tuned with over 593.8K tables and 2.36M high-quality query-table-output tuples, a scale of table-related data unprecedented in prior research. This extensive training enables TableGPT2 to excel in table-centric tasks while maintaining strong general language and coding abilities. One of TableGPT2's key innovations is its novel table encoder, specifically designed to capture schema-level and cell-level information. This encoder strengthens the model's ability to handle ambiguous queries, missing column names, and irregular tables commonly encountered in real-world applications. Similar to visual language models, this pioneering approach integrates with the decoder to form a robust large multimodal model. We believe the results are compelling: over 23 benchmarking metrics, TableGPT2 achieves an average performance improvement of 35.20% in the 7B model and 49.32% in the 72B model over prior benchmark-neutral LLMs, with robust general-purpose capabilities intact.

Speculative decoding aims to speed up autoregressive generation of a language model by verifying in parallel the tokens generated by a smaller draft model.In this work, we explore the effectiveness of learning-free, negligible-cost draft strategies, namely $N$-grams obtained from the model weights and the context. While the predicted next token of the base model is rarely the top prediction of these simple strategies, we observe that it is often within their top-$k$ predictions for small $k$. Based on this, we show that combinations of simple strategies can achieve significant inference speedups over different tasks. The overall performance is comparable to more complex methods, yet does not require expensive preprocessing or modification of the base model, and allows for seamless `plug-and-play' integration into pipelines.

We present a real-time gaze-based interaction simulation methodology using an offline dataset to evaluate the eye-tracking signal quality. This study employs three fundamental eye-movement classification algorithms to identify physiological fixations from the eye-tracking data. We introduce the Rank-1 fixation selection approach to identify the most stable fixation period nearest to a target, referred to as the trigger-event. Our evaluation explores how varying constraints impact the definition of trigger-events and evaluates the eye-tracking signal quality of defined trigger-events. Results show that while the dispersion threshold-based algorithm identifies trigger-events more accurately, the Kalman filter-based classification algorithm performs better in eye-tracking signal quality, as demonstrated through a user-centric quality assessment using user- and error-percentile tiers. Despite median user-level performance showing minor differences across algorithms, significant variability in signal quality across participants highlights the importance of algorithm selection to ensure system reliability.

The rapid development of Multimodal Large Language Models (MLLMs) has expanded their capabilities from image comprehension to video understanding. However, most of these MLLMs focus primarily on offline video comprehension, necessitating extensive processing of all video frames before any queries can be made. This presents a significant gap compared to the human ability to watch, listen, think, and respond to streaming inputs in real time, highlighting the limitations of current MLLMs. In this paper, we introduce StreamingBench, the first comprehensive benchmark designed to evaluate the streaming video understanding capabilities of MLLMs. StreamingBench assesses three core aspects of streaming video understanding: (1) real-time visual understanding, (2) omni-source understanding, and (3) contextual understanding. The benchmark consists of 18 tasks, featuring 900 videos and 4,500 human-curated QA pairs. Each video features five questions presented at different time points to simulate a continuous streaming scenario. We conduct experiments on StreamingBench with 13 open-source and proprietary MLLMs and find that even the most advanced proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly below human-level streaming video understanding capabilities. We hope our work can facilitate further advancements for MLLMs, empowering them to approach human-level video comprehension and interaction in more realistic scenarios.

In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司