亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-supervised speech models have grown fast during the past few years and have proven feasible for use in various downstream tasks. Some recent work has started to look at the characteristics of these models, yet many concerns have not been fully addressed. In this work, we conduct a study on emotional corpora to explore a popular self-supervised model -- wav2vec 2.0. Via a set of quantitative analysis, we mainly demonstrate that: 1) wav2vec 2.0 appears to discard paralinguistic information that is less useful for word recognition purposes; 2) for emotion recognition, representations from the middle layer alone perform as well as those derived from layer averaging, while the final layer results in the worst performance in some cases; 3) current self-supervised models may not be the optimal solution for downstream tasks that make use of non-lexical features. Our work provides novel findings that will aid future research in this area and theoretical basis for the use of existing models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · Performance · CASES · 查準率/準確率 ·
2023 年 2 月 13 日

Finding a product online can be a challenging task for users. Faceted search interfaces, often in combination with recommenders, can support users in finding a product that fits their preferences. However, those preferences are not always equally weighted: some might be more important to a user than others (e.g. red is the favorite color, but blue is also fine) and sometimes preferences are even contradictory (e.g. the lowest price vs. the highest performance). Often, there is even no product that meets all preferences. In those cases, faceted search interfaces reach their limits. In our research, we investigate the potential of a search interface, which allows a preference-based ranking based on weighted search and facet terms. We performed a user study with 24 participants and measured user satisfaction and system performance. The results show that with the preference-based search interface the users were given more alternatives that best meet their preferences and that they are more satisfied with the selected product than with a search interface using standard facets. Furthermore, in this work we study the relationship between user satisfaction and search precision within the whole search session and found first indications that there might be a relation between them.

Large language models (LLMs) can acquire strong code-generation capabilities through few-shot learning. In contrast, supervised fine-tuning is still needed for smaller models to achieve good performance. Such fine-tuning demands a large number of task-specific NL-code pairs, which are expensive to obtain. In this paper, we attempt to transfer the code generation ability of an LLM to a smaller model with the aid of weakly-supervised data. More specifically, we propose explicit knowledge transfer (EKT), which uses the few-shot capabilities of a teacher LLM to create NL-code pairs that we then filter for correctness and fine-tune the student on. We evaluate EKT on the task of generating code solutions to math word problems from the GSM8k dataset. We find that EKT not only yields better performance than training with expert iteration, but also outperforms knowledge distillation, another form of knowledge transfer. A GPT-Neo 1.3B model trained using EKT with a GPT-J teacher achieves a 12.4% pass@100 on GSM8k, while the same student and teacher trained with knowledge distillation yield only a 3.7% pass@100. We also show that it is possible for a student model to outperform the teacher using EKT.

Large Language Models (LLMs) are powerful tools, capable of leveraging their training on natural language to write stories, generate code, and answer questions. But can they generate functional video game levels? Game levels, with their complex functional constraints and spatial relationships in more than one dimension, are very different from the kinds of data an LLM typically sees during training. Datasets of game levels are also hard to come by, potentially taxing the abilities of these data-hungry models. We investigate the use of LLMs to generate levels for the game Sokoban, finding that LLMs are indeed capable of doing so, and that their performance scales dramatically with dataset size. We also perform preliminary experiments on controlling LLM level generators and discuss promising areas for future work.

We study the interplay between the data distribution and Q-learning-based algorithms with function approximation. We provide a unified theoretical and empirical analysis as to how different properties of the data distribution influence the performance of Q-learning-based algorithms. We connect different lines of research, as well as validate and extend previous results. We start by reviewing theoretical bounds on the performance of approximate dynamic programming algorithms. We then introduce a novel four-state MDP specifically tailored to highlight the impact of the data distribution in the performance of Q-learning-based algorithms with function approximation, both online and offline. Finally, we experimentally assess the impact of the data distribution properties on the performance of two offline Q-learning-based algorithms under different environments. According to our results: (i) high entropy data distributions are well-suited for learning in an offline manner; and (ii) a certain degree of data diversity (data coverage) and data quality (closeness to optimal policy) are jointly desirable for offline learning.

In iterative approaches to empirical game-theoretic analysis (EGTA), the strategy space is expanded incrementally based on analysis of intermediate game models. A common approach to strategy exploration, represented by the double oracle algorithm, is to add strategies that best-respond to a current equilibrium. This approach may suffer from overfitting and other limitations, leading the developers of the policy-space response oracle (PSRO) framework for iterative EGTA to generalize the target of best response, employing what they term meta-strategy solvers (MSSs). Noting that many MSSs can be viewed as perturbed or approximated versions of Nash equilibrium, we adopt an explicit regularization perspective to the specification and analysis of MSSs. We propose a novel MSS called regularized replicator dynamics (RRD), which simply truncates the process based on a regret criterion. We show that RRD is more adaptive than existing MSSs and outperforms them in various games. We extend our study to three-player games, for which the payoff matrix is cubic in the number of strategies and so exhaustively evaluating profiles may not be feasible. We propose a profile search method that can identify solutions from incomplete models, and combine this with iterative model construction using a regularized MSS. Finally, and most importantly, we reveal that the regret of best response targets has a tremendous influence on the performance of strategy exploration through experiments, which provides an explanation for the effectiveness of regularization in PSRO.

[Context and motivation] Incompleteness in natural-language requirements is a challenging problem. [Question/problem] A common technique for detecting incompleteness in requirements is checking the requirements against external sources. With the emergence of language models such as BERT, an interesting question is whether language models are useful external sources for finding potential incompleteness in requirements. [Principal ideas/results] We mask words in requirements and have BERT's masked language model (MLM) generate contextualized predictions for filling the masked slots. We simulate incompleteness by withholding content from requirements and measure BERT's ability to predict terminology that is present in the withheld content but absent in the content disclosed to BERT. [Contribution] BERT can be configured to generate multiple predictions per mask. Our first contribution is to determine how many predictions per mask is an optimal trade-off between effectively discovering omissions in requirements and the level of noise in the predictions. Our second contribution is devising a machine learning-based filter that post-processes predictions made by BERT to further reduce noise. We empirically evaluate our solution over 40 requirements specifications drawn from the PURE dataset [1]. Our results indicate that: (1) predictions made by BERT are highly effective at pinpointing terminology that is missing from requirements, and (2) our filter can substantially reduce noise from the predictions, thus making BERT a more compelling aid for improving completeness in requirements.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.

北京阿比特科技有限公司