We study message identification over a $q$-ary uniform permutation channel, where the transmitted vector is permuted by a permutation chosen uniformly at random. For discrete memoryless channels (DMCs), the number of identifiable messages grows doubly exponentially. Identification capacity, the maximum second-order exponent, is known to be the same as the Shannon capacity of the DMC. Permutation channels support reliable communication of only polynomially many messages. A simple achievability result shows that message sizes growing as $2^{c_nn^{q-1}}$ are identifiable for any $c_n\rightarrow 0$. We prove two converse results. A ``soft'' converse shows that for any $R>0$, there is no sequence of identification codes with message size growing as $2^{Rn^{q-1}}$ with a power-law decay ($n^{-\mu}$) of the error probability. We also prove a ``strong" converse showing that for any sequence of identification codes with message size $2^{Rn^{q-1}\log n}$ ($R>0$), the sum of type I and type II error probabilities approaches at least $1$ as $n\rightarrow \infty$. To prove the soft converse, we use a sequence of steps to construct a new identification code with a simpler structure which relates to a set system, and then use a lower bound on the normalized maximum pairwise intersection of a set system. To prove the strong converse, we use results on approximation of distributions.
We study the $d$-dimensional knapsack problem. We are given a set of items, each with a $d$-dimensional cost vector and a profit, along with a $d$-dimensional budget vector. The goal is to select a set of items that do not exceed the budget in all dimensions and maximize the total profit. A PTAS with running time $n^{\Theta(d/\varepsilon)}$ has long been known for this problem, where $\varepsilon$ is the error parameter and $n$ is the encoding size. Despite decades of active research, the best running time of a PTAS has remained $O(n^{\lceil d/\varepsilon \rceil - d})$. Unfortunately, existing lower bounds only cover the special case with two dimensions $d = 2$, and do not answer whether there is a $n^{o(d/\varepsilon)}$-time PTAS for larger values of $d$. The status of exact algorithms is similar: there is a simple $O(n \cdot W^d)$-time (exact) dynamic programming algorithm, where $W$ is the maximum budget, but there is no lower bound which explains the strong exponential dependence on $d$. In this work, we show that the running times of the best-known PTAS and exact algorithm cannot be improved up to a polylogarithmic factor assuming Gap-ETH. Our techniques are based on a robust reduction from 2-CSP, which embeds 2-CSP constraints into a desired number of dimensions, exhibiting tight trade-off between $d$ and $\varepsilon$ for most regimes of the parameters. Informally, we obtain the following main results for $d$-dimensional knapsack. No $n^{o(d/\varepsilon \cdot 1/(\log(d/\varepsilon))^2)}$-time $(1-\varepsilon)$-approximation for every $\varepsilon = O(1/\log d)$. No $(n+W)^{o(d/\log d)}$-time exact algorithm (assuming ETH). No $n^{o(\sqrt{d})}$-time $(1-\varepsilon)$-approximation for constant $\varepsilon$. $(d \cdot \log W)^{O(d^2)} + n^{O(1)}$-time $\Omega(1/\sqrt{d})$-approximation and a matching $n^{O(1)}$-time lower~bound.
A new variational inference method, SPH-ParVI, based on smoothed particle hydrodynamics (SPH), is proposed for sampling partially known densities (e.g. up to a constant) or sampling using gradients. SPH-ParVI simulates the flow of a fluid under external effects driven by the target density; transient or steady state of the fluid approximates the target density. The continuum fluid is modelled as an interacting particle system (IPS) via SPH, where each particle carries smoothed properties, interacts and evolves as per the Navier-Stokes equations. This mesh-free, Lagrangian simulation method offers fast, flexible, scalable and deterministic sampling and inference for a class of probabilistic models such as those encountered in Bayesian inference and generative modelling.
Conformal prediction (CP) can convert any model's output into prediction sets guaranteed to include the true label with any user-specified probability. However, same as the model itself, CP is vulnerable to adversarial test examples (evasion) and perturbed calibration data (poisoning). We derive provably robust sets by bounding the worst-case change in conformity scores. Our tighter bounds lead to more efficient sets. We cover both continuous and discrete (sparse) data and our guarantees work both for evasion and poisoning attacks (on both features and labels).
We propose a novel framework for contextual multi-armed bandits based on tree ensembles. Our framework integrates two widely used bandit methods, Upper Confidence Bound and Thompson Sampling, for both standard and combinatorial settings. We demonstrate the effectiveness of our framework via several experimental studies, employing both XGBoost and random forest, two popular tree ensemble methods. Compared to state-of-the-art methods based on decision trees and neural networks, our methods exhibit superior performance in terms of both regret minimization and computational runtime, when applied to benchmark datasets and the real-world application of navigation over road networks.
Large language models in the past have typically relied on some form of reinforcement learning with human feedback (RLHF) to better align model responses with human preferences. However, because of oft-observed instabilities when implementing these RLHF pipelines, various reparameterization techniques have recently been introduced to sidestep the need for separately learning an RL reward model. Instead, directly fine-tuning for human preferences is achieved via the minimization of a single closed-form training objective, a process originally referred to as direct preference optimization (DPO) and followed by several notable descendants. Although effective in certain real-world settings, we introduce new evaluation criteria that serve to highlight unresolved shortcomings in the ability of existing DPO methods to interpolate between a pre-trained reference model and empirical measures of human preferences, as well as unavoidable trade-offs in how low- and high-quality responses are regularized and constraints are handled. Our insights then motivate an alternative DPO-like loss that provably mitigates these limitations. Empirical results serve to corroborate notable aspects of our analyses.
We study a general factor analysis framework where the $n$-by-$p$ data matrix is assumed to follow a general exponential family distribution entry-wise. While this model framework has been proposed before, we here further relax its distributional assumption by using a quasi-likelihood setup. By parameterizing the mean-variance relationship on data entries, we additionally introduce a dispersion parameter and entry-wise weights to model large variations and missing values. The resulting model is thus not only robust to distribution misspecification but also more flexible and able to capture non-Gaussian covariance structures of the data matrix. Our main focus is on efficient computational approaches to perform the factor analysis. Previous modeling frameworks rely on simulated maximum likelihood (SML) to find the factorization solution, but this method was shown to lead to asymptotic bias when the simulated sample size grows slower than the square root of the sample size $n$, eliminating its practical application for data matrices with large $n$. Borrowing from expectation-maximization (EM) and stochastic gradient descent (SGD), we investigate three estimation procedures based on iterative factorization updates. Our proposed solution does not show asymptotic biases, and scales even better for large matrix factorizations with error $O(1/p)$. To support our findings, we conduct simulation experiments and discuss its application in three case studies.
Determining the approximate degree composition for Boolean functions remains a significant unsolved problem in Boolean function complexity. In recent decades, researchers have concentrated on proving that approximate degree composes for special types of inner and outer functions. An important and extensively studied class of functions are the recursive functions, i.e.~functions obtained by composing a base function with itself a number of times. Let $h^d$ denote the standard $d$-fold composition of the base function $h$. The main result of this work is to show that the approximate degree composes if either of the following conditions holds: \begin{itemize} \item The outer function $f:\{0,1\}^n\to \{0,1\}$ is a recursive function of the form $h^d$, with $h$ being any base function and $d= \Omega(\log\log n)$. \item The inner function is a recursive function of the form $h^d$, with $h$ being any constant arity base function (other than AND and OR) and $d= \Omega(\log\log n)$, where $n$ is the arity of the outer function. \end{itemize} In terms of proof techniques, we first observe that the lower bound for composition can be obtained by introducing majority in between the inner and the outer functions. We then show that majority can be \emph{efficiently eliminated} if the inner or outer function is a recursive function.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.