亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Speech perception involves storing and integrating sequentially presented items. Recent work in cognitive neuroscience has identified temporal and contextual characteristics in humans' neural encoding of speech that may facilitate this temporal processing. In this study, we simulated similar analyses with representations extracted from a computational model that was trained on unlabelled speech with the learning objective of predicting upcoming acoustics. Our simulations revealed temporal dynamics similar to those in brain signals, implying that these properties can arise without linguistic knowledge. Another property shared between brains and the model is that the encoding patterns of phonemes support some degree of cross-context generalization. However, we found evidence that the effectiveness of these generalizations depends on the specific contexts, which suggests that this analysis alone is insufficient to support the presence of context-invariant encoding.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Neural Networks · Learning · 代碼 · Networks ·
2024 年 6 月 24 日

Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations, which we call the `coding scheme', is still unclear. To understand the emergent coding scheme, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as `non-lazy', `rich', or `mean-field' regime) shows that the networks acquire strong, data-dependent features. Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges. Despite the strong representations, the mean predictor is identical to the lazy case. In nonlinear networks, spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.

Various methods have emerged for conducting mediation analyses with multiple correlated mediators, each with distinct strengths and limitations. However, a comparative evaluation of these methods is lacking, providing the motivation for this paper. This study examines six mediation analysis methods for multiple correlated mediators that provide insights to the contributors for health disparities. We assessed the performance of each method in identifying joint or path-specific mediation effects in the context of binary outcome variables varying mediator types and levels of residual correlation between mediators. Through comprehensive simulations, the performance of six methods in estimating joint and/or path-specific mediation effects was assessed rigorously using a variety of metrics including bias, mean squared error, coverage and width of the 95$\%$ confidence intervals. Subsequently, these methods were applied to the REasons for Geographic And Racial Differences in Stroke (REGARDS) study, where differing conclusions were obtained depending on the mediation method employed. This evaluation provides valuable guidance for researchers grappling with complex multi-mediator scenarios, enabling them to select an optimal mediation method for their research question and dataset.

Structural identifiability is an important property of parametric ODE models. When conducting an experiment and inferring the parameter value from the time-series data, we want to know if the value is globally, locally, or non-identifiable. Global identifiability of the parameter indicates that there exists only one possible solution to the inference problem, local identifiability suggests that there could be several (but finitely many) possibilities, while non-identifiability implies that there are infinitely many possibilities for the value. Having this information is useful since, one would, for example, only perform inferences for the parameters which are identifiable. Given the current significance and widespread research conducted in this area, we decided to create a database of linear compartment models and their identifiability results. This facilitates the process of checking theorems and conjectures and drawing conclusions on identifiability. By only storing models up to symmetries and isomorphisms, we optimize memory efficiency and reduce query time. We conclude by applying our database to real problems. We tested a conjecture about deleting one leak of the model states in the paper 'Linear compartmental models: Input-output equations and operations that preserve identifiability' by E. Gross et al., and managed to produce a counterexample. We also compute some interesting statistics related to the identifiability of linear compartment model parameters.

This work presents a methodology to predict a near-optimal spacing function, which defines the element sizes, suitable to perform steady RANS turbulent viscous flow simulations. The strategy aims at utilising existing high fidelity simulations to compute a target spacing function and train an artificial neural network (ANN) to predict the spacing function for new simulations, either unseen operating conditions or unseen geometric configurations. Several challenges induced by the use of highly stretched elements are addressed. The final goal is to substantially reduce the time and human expertise that is nowadays required to produce suitable meshes for simulations. Numerical examples involving turbulent compressible flows in two dimensions are used to demonstrate the ability of the trained ANN to predict a suitable spacing function. The influence of the NN architecture and the size of the training dataset are discussed. Finally, the suitability of the predicted meshes to perform simulations is investigated.

Stress and material deformation field predictions are among the most important tasks in computational mechanics. These predictions are typically made by solving the governing equations of continuum mechanics using finite element analysis, which can become computationally prohibitive considering complex microstructures and material behaviors. Machine learning (ML) methods offer potentially cost effective surrogates for these applications. However, existing ML surrogates are either limited to low-dimensional problems and/or do not provide uncertainty estimates in the predictions. This work proposes an ML surrogate framework for stress field prediction and uncertainty quantification for diverse materials microstructures. A modified Bayesian U-net architecture is employed to provide a data-driven image-to-image mapping from initial microstructure to stress field with prediction (epistemic) uncertainty estimates. The Bayesian posterior distributions for the U-net parameters are estimated using three state-of-the-art inference algorithms: the posterior sampling-based Hamiltonian Monte Carlo method and two variational approaches, the Monte-Carlo Dropout method and the Bayes by Backprop algorithm. A systematic comparison of the predictive accuracy and uncertainty estimates for these methods is performed for a fiber reinforced composite material and polycrystalline microstructure application. It is shown that the proposed methods yield predictions of high accuracy compared to the FEA solution, while uncertainty estimates depend on the inference approach. Generally, the Hamiltonian Monte Carlo and Bayes by Backprop methods provide consistent uncertainty estimates. Uncertainty estimates from Monte Carlo Dropout, on the other hand, are more difficult to interpret and depend strongly on the method's design.

We introduce an algorithm that simplifies the construction of efficient estimators, making them accessible to a broader audience. 'Dimple' takes as input computer code representing a parameter of interest and outputs an efficient estimator. Unlike standard approaches, it does not require users to derive a functional derivative known as the efficient influence function. Dimple avoids this task by applying automatic differentiation to the statistical functional of interest. Doing so requires expressing this functional as a composition of primitives satisfying a novel differentiability condition. Dimple also uses this composition to determine the nuisances it must estimate. In software, primitives can be implemented independently of one another and reused across different estimation problems. We provide a proof-of-concept Python implementation and showcase through examples how it allows users to go from parameter specification to efficient estimation with just a few lines of code.

Noninformative priors constructed for estimation purposes are usually not appropriate for model selection and testing. The methodology of integral priors was developed to get prior distributions for Bayesian model selection when comparing two models, modifying initial improper reference priors. We propose a generalization of this methodology to more than two models. Our approach adds an artificial copy of each model under comparison by compactifying the parametric space and creating an ergodic Markov chain across all models that returns the integral priors as marginals of the stationary distribution. Besides the garantee of their existance and the lack of paradoxes attached to estimation reference priors, an additional advantage of this methodology is that the simulation of this Markov chain is straightforward as it only requires simulations of imaginary training samples for all models and from the corresponding posterior distributions. This renders its implementation automatic and generic, both in the nested case and in the nonnested case.

Generative diffusion models have achieved spectacular performance in many areas of machine learning and generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, variational inference and stochastic calculus, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We show that these phase-transitions are always in a mean-field universality class, as they are the result of a self-consistency condition in the generative dynamics. We argue that the critical instability that arises from the phase transitions lies at the heart of their generative capabilities, which are characterized by a set of mean-field critical exponents. Finally, we show that the dynamic equation of the generative process can be interpreted as a stochastic adiabatic transformation that minimizes the free energy while keeping the system in thermal equilibrium.

Difference-in-differences (DID) is a popular approach to identify the causal effects of treatments and policies in the presence of unmeasured confounding. DID identifies the sample average treatment effect in the treated (SATT). However, a goal of such research is often to inform decision-making in target populations outside the treated sample. Transportability methods have been developed to extend inferences from study samples to external target populations; these methods have primarily been developed and applied in settings where identification is based on conditional independence between the treatment and potential outcomes, such as in a randomized trial. We present a novel approach to identifying and estimating effects in a target population, based on DID conducted in a study sample that differs from the target population. We present a range of assumptions under which one may identify causal effects in the target population and employ causal diagrams to illustrate these assumptions. In most realistic settings, results depend critically on the assumption that any unmeasured confounders are not effect measure modifiers on the scale of the effect of interest (e.g., risk difference, odds ratio). We develop several estimators of transported effects, including g-computation, inverse odds weighting, and a doubly robust estimator based on the efficient influence function. Simulation results support theoretical properties of the proposed estimators. As an example, we apply our approach to study the effects of a 2018 US federal smoke-free public housing law on air quality in public housing across the US, using data from a DID study conducted in New York City alone.

Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.

北京阿比特科技有限公司