亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a kind of new SDE that was arisen from the research on optimization in machine learning, we call it power-law dynamic because its stationary distribution cannot have sub-Gaussian tail and obeys power-law. We prove that the power-law dynamic is ergodic with unique stationary distribution, provided the learning rate is small enough. We investigate its first exist time. In particular, we compare the exit times of the (continuous) power-law dynamic and its discretization. The comparison can help guide machine learning algorithm.

相關內容

In this work, we develop a class of high-order multiderivative time integration methods that is able to preserve certain functionals discretely. Important ingredients are the recently developed Hermite-Birkhoff-Predictor-Corrector methods and the technique of relaxation for numerical methods of ODEs. We explain the algorithm in detail and show numerical results for two- and three-derivative methods, comparing relaxed and unrelaxed methods. The numerical results demonstrate that, at the slight cost of the relaxation, an improved scheme is obtained.

Compared to widely used likelihood-based approaches, the minimum contrast (MC) method is a computationally efficient method for estimation and inference of parametric stationary point processes. This advantage becomes more pronounced when analyzing complex point process models, such as multivariate log-Gaussian Cox processes (LGCP). Despite its practical advantages, there is very little work on the MC method for multivariate point processes. The aim of this article is to introduce a new MC method for parametric multivariate stationary spatial point processes. A contrast function is calculated based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, the asymptotic normality of the MC estimator of the model parameters is derived. The performance of the proposed method is illustrated with bivariate LGCP simulations and a real data analysis of a bivariate point pattern of the 2014 terrorist attacks in Nigeria.

This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Mat{\'e}rn covariance can be selected effectively by most selection criteria.

In this study, we consider a class of non-autonomous time-fractional partial advection-diffusion-reaction (TF-ADR) equations with Caputo type fractional derivative. To obtain the numerical solution of the model problem, we apply the non-symmetric interior penalty Galerkin (NIPG) method in space on a uniform mesh and the L1-scheme in time on a graded mesh. It is demonstrated that the computed solution is discretely stable. Superconvergence of error estimates for the proposed method are obtained using the discrete energy-norm. Also, we have applied the proposed method to solve semilinear problems after linearizing by the Newton linearization process. The theoretical results are verified through numerical experiments.

Mediation analysis is widely used in health science research to evaluate the extent to which an intermediate variable explains an observed exposure-outcome relationship. However, the validity of analysis can be compromised when the exposure is measured with error. This article investigates the impact of exposure measurement error on assessing mediation with a survival outcome, based on the Cox proportional hazards outcome model. When the outcome is rare and there is no exposure-mediator interaction, we show that the uncorrected estimators of the natural indirect and direct effects can be biased into either direction, but the uncorrected estimator of the mediation proportion is approximately unbiased as long as the measurement error is not large or the mediator-exposure association is not strong. We develop ordinary regression calibration and risk set regression calibration approaches to correct the exposure measurement error-induced bias when estimating mediation effects and allowing for an exposure-mediator interaction in the Cox outcome model. The proposed approaches require a validation study to characterize the measurement error process. We apply the proposed approaches to the Health Professionals Follow-up study to evaluate extent to which reduced body mass index mediates the protective effect of vigorous physical activity on the risk of cardiovascular diseases, and compare the finite-sample properties of the proposed estimators via simulations.

In this paper, we propose a systematic approach for accelerating finite element-type methods by machine learning for the numerical solution of partial differential equations (PDEs). The main idea is to use a neural network to learn the solution map of the PDEs and to do so in an element-wise fashion. This map takes input of the element geometry and the PDEs' parameters on that element, and gives output of two operators -- (1) the in2out operator for inter-element communication, and (2) the in2sol operator (Green's function) for element-wise solution recovery. A significant advantage of this approach is that, once trained, this network can be used for the numerical solution of the PDE for any domain geometry and any parameter distribution without retraining. Also, the training is significantly simpler since it is done on the element level instead on the entire domain. We call this approach element learning. This method is closely related to hybridizbale discontinuous Galerkin (HDG) methods in the sense that the local solvers of HDG are replaced by machine learning approaches. Numerical tests are presented for an example PDE, the radiative transfer equation, in a variety of scenarios with idealized or realistic cloud fields, with smooth or sharp gradient in the cloud boundary transition. Under a fixed accuracy level of $10^{-3}$ in the relative $L^2$ error, and polynomial degree $p=6$ in each element, we observe an approximately 5 to 10 times speed-up by element learning compared to a classical finite element-type method.

In recent years, the concept of introducing physics to machine learning has become widely popular. Most physics-inclusive ML-techniques however are still limited to a single geometry or a set of parametrizable geometries. Thus, there remains the need to train a new model for a new geometry, even if it is only slightly modified. With this work we introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization. This technique is based on a combination of a U-Net-like CNN and well established discretization methods from the field of the finite difference method.The results of our physics-aware CNN are compared to a state-of-the-art data-based approach. Additionally, it is also shown how our approach performs when combined with the data-based approach.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司