A robust and sparse Direction of Arrival (DOA) estimator is derived for array data that follows a Complex Elliptically Symmetric (CES) distribution with zero-mean and finite second-order moments. The derivation allows to choose the loss function and four loss functions are discussed in detail: the Gauss loss which is the Maximum-Likelihood (ML) loss for the circularly symmetric complex Gaussian distribution, the ML-loss for the complex multivariate $t$-distribution (MVT) with $\nu$ degrees of freedom, as well as Huber and Tyler loss functions. For Gauss loss, the method reduces to Sparse Bayesian Learning (SBL). The root mean square DOA error of the derived estimators is discussed for Gaussian, MVT, and $\epsilon$-contaminated data. The robust SBL estimators perform well for all cases and nearly identical with classical SBL for Gaussian noise.
Dense SLAM based on monocular cameras does indeed have immense application value in the field of AR/VR, especially when it is performed on a mobile device. In this paper, we propose a novel method that integrates a light-weight depth completion network into a sparse SLAM system using a multi-basis depth representation, so that dense mapping can be performed online even on a mobile phone. Specifically, we present a specifically optimized multi-basis depth completion network, called BBC-Net, tailored to the characteristics of traditional sparse SLAM systems. BBC-Net can predict multiple balanced bases and a confidence map from a monocular image with sparse points generated by off-the-shelf keypoint-based SLAM systems. The final depth is a linear combination of predicted depth bases that can be optimized by tuning the corresponding weights. To seamlessly incorporate the weights into traditional SLAM optimization and ensure efficiency and robustness, we design a set of depth weight factors, which makes our network a versatile plug-in module, facilitating easy integration into various existing sparse SLAM systems and significantly enhancing global depth consistency through bundle adjustment. To verify the portability of our method, we integrate BBC-Net into two representative SLAM systems. The experimental results on various datasets show that the proposed method achieves better performance in monocular dense mapping than the state-of-the-art methods. We provide an online demo running on a mobile phone, which verifies the efficiency and mapping quality of the proposed method in real-world scenarios.
Neural networks (NNs) have been successfully deployed in various fields. In NNs, a large number of multiplyaccumulate (MAC) operations need to be performed. Most existing digital hardware platforms rely on parallel MAC units to accelerate these MAC operations. However, under a given area constraint, the number of MAC units in such platforms is limited, so MAC units have to be reused to perform MAC operations in a neural network. Accordingly, the throughput in generating classification results is not high, which prevents the application of traditional hardware platforms in extreme-throughput scenarios. Besides, the power consumption of such platforms is also high, mainly due to data movement. To overcome this challenge, in this paper, we propose to flatten and implement all the operations at neurons, e.g., MAC and ReLU, in a neural network with their corresponding logic circuits. To improve the throughput and reduce the power consumption of such logic designs, the weight values are embedded into the MAC units to simplify the logic, which can reduce the delay of the MAC units and the power consumption incurred by weight movement. The retiming technique is further used to improve the throughput of the logic circuits for neural networks. In addition, we propose a hardware-aware training method to reduce the area of logic designs of neural networks. Experimental results demonstrate that the proposed logic designs can achieve high throughput and low power consumption for several high-throughput applications.
Typical arguments for results like Kleene's Second Recursion Theorem and the existence of self-writing computer programs bear the fingerprints of equational reasoning and combinatory logic. In fact, the connection of combinatory logic and computability theory is very old, and this paper extends this connection in new ways. In one direction, we counter the main trend in both computability theory and combinatory logic of heading straight to undecidability. Instead, this paper proposes using several very small equational logics to examine results in computability theory itself. These logics are decidable via term rewriting. We argue that they have something interesting to say about computability theory. They are closely related to fragments of combinatory logic which are decidable, and so this paper contributes to the study of such fragments. The paper has a few surprising results such as a classification of quine programs (programs which output themselves) in two decidable fragments. The classification goes via examination of normal forms in term rewriting systems, hence the title of the paper. The classification is an explanation of why all quine programs (in any language) are "pretty much the same, except for inessential details." In addition, we study the relational structure whose objects are the programs with the relation "p expresses q" meaning that if the program p is run on nothing, then it eventually outputs the program q.
Large Language Models (LLMs) have revolutionized programming and software engineering. AI programming assistants such as GitHub Copilot X enable conversational programming, narrowing the gap between human intent and code generation. However, prior literature has identified a key challenge--there is a gap between user's mental model of the system's understanding after a sequence of natural language utterances, and the AI system's actual understanding. To address this, we introduce Programming with Representations (PwR), an approach that uses representations to convey the system's understanding back to the user in natural language. We conducted an in-lab task-centered study with 14 users of varying programming proficiency and found that representations significantly improve understandability, and instilled a sense of agency among our participants. Expert programmers use them for verification, while intermediate programmers benefit from confirmation. Natural language-based development with LLMs, coupled with representations, promises to transform software development, making it more accessible and efficient.
This paper presents an efficient archival framework for exploring and tracking cyberspace large-scale data called Tempo-Spatial Content Delivery Network (TS-CDN). Social media data streams are renewing in time and spatial dimensions. Various types of websites and social networks (i.e., channels, groups, pages, etc.) are considered spatial in cyberspace. Accurate analysis entails encompassing the bulk of data. In TS-CDN by applying the hash function on big data an efficient content delivery network is created. Using hash function rebuffs data redundancy and leads to conclude unique data archive in large-scale. This framework based on entered query allows for apparent monitoring and exploring data in tempo-spatial dimension based on TF-IDF score. Also by conformance from i18n standard, the Unicode problem has been dissolved. For evaluation of TS-CDN framework, a dataset from Telegram news channels from March 23, 2020 (1399-01-01), to September 21, 2020 (1399-06-31) on topics including Coronavirus (COVID-19), vaccine, school reopening, flood, earthquake, justice shares, petroleum, and quarantine exploited. By applying hash on Telegram dataset in the mentioned time interval, a significant reduction in media files such as 39.8% for videos (from 79.5 GB to 47.8 GB), and 10% for images (from 4 GB to 3.6 GB) occurred. TS-CDN infrastructure in a web-based approach has been presented as a service-oriented system. Experiments conducted on enormous time series data, including different spatial dimensions (i.e., Khabare Fouri, Khabarhaye Fouri, Akhbare Rouze Iran, and Akhbare Rasmi Telegram news channels), demonstrate the efficiency and applicability of the implemented TS-CDN framework.
We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). Formally, we prove lower bounds against the accuracy of FPC-interpretations that map Unique Games instances (encoded as relational structures) to rational numbers giving the approximate fraction of constraints that can be satisfied. We prove two new FPC-inexpressibility results for Unique Games: the existence of a (1/2, 1/3 + $\delta$)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different. We start with a graph of very large girth and label the edges with random affine vector spaces over $\ff_2$ that determine the constraints in the two structures. Duplicator's strategy involves maintaining a partial isomorphism over a minimal tree that spans the pebbled vertices of the graph.
The application of Physics-Informed Neural Networks (PINNs) is investigated for the first time in solving the one-dimensional Countercurrent spontaneous imbibition (COUCSI) problem at both early and late time (i.e., before and after the imbibition front meets the no-flow boundary). We introduce utilization of Change-of-Variables as a technique for improving performance of PINNs. We formulated the COUCSI problem in three equivalent forms by changing the independent variables. The first describes saturation as function of normalized position X and time T; the second as function of X and Y=T^0.5; and the third as a sole function of Z=X/T^0.5 (valid only at early time). The PINN model was generated using a feed-forward neural network and trained based on minimizing a weighted loss function, including the physics-informed loss term and terms corresponding to the initial and boundary conditions. All three formulations could closely approximate the correct solutions, with water saturation mean absolute errors around 0.019 and 0.009 for XT and XY formulations and 0.012 for the Z formulation at early time. The Z formulation perfectly captured the self-similarity of the system at early time. This was less captured by XT and XY formulations. The total variation of saturation was preserved in the Z formulation, and it was better preserved with XY- than XT formulation. Redefining the problem based on the physics-inspired variables reduced the non-linearity of the problem and allowed higher solution accuracies, a higher degree of loss-landscape convexity, a lower number of required collocation points, smaller network sizes, and more computationally efficient solutions.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.