This paper proposes the Doubly Compressed Momentum-assisted stochastic gradient tracking algorithm $\texttt{DoCoM}$ for communication-efficient decentralized optimization. The algorithm features two main ingredients to achieve a near-optimal sample complexity while allowing for communication compression. First, the algorithm tracks both the averaged iterate and stochastic gradient using compressed gossiping consensus. Second, a momentum step is incorporated for adaptive variance reduction with the local gradient estimates. We show that $\texttt{DoCoM}$ finds a near-stationary solution at all participating agents satisfying $\mathbb{E}[ \| \nabla f( \theta ) \|^2 ] = \mathcal{O}( 1 / T^{2/3} )$ in $T$ iterations, where $f(\theta)$ is a smooth (possibly non-convex) objective function. Notice that the proof is achieved via analytically designing a new potential function that tightly tracks the one-iteration progress of $\texttt{DoCoM}$. As a corollary, our analysis also established the linear convergence of $\texttt{DoCoM}$ to a global optimal solution for objective functions with the Polyak-{\L}ojasiewicz condition. Numerical experiments demonstrate that our algorithm outperforms several state-of-the-art algorithms in practice.
The paper presents an algorithm, called Self-Morphing Adaptive Replanning Tree (SMART), that facilitates fast replanning in dynamic environments. SMART performs risk based tree-pruning if the current path is obstructed by nearby moving obstacle(s), resulting in multiple disjoint subtrees. Then, for speedy recovery, it exploits these subtrees and performs informed tree-repair at hot-spots that lie at the intersection of subtrees to find a new path. The performance of SMART is comparatively evaluated with eight existing algorithms through extensive simulations. Two scenarios are considered with: 1) dynamic obstacles and 2) both static and dynamic obstacles. The results show that SMART yields significant improvements in replanning time, success rate and travel time. Finally, the performance of SMART is validated by a real laboratory experiment.
We consider the problem of estimating the learning rate in adaptive methods, such as Adagrad and Adam. We describe two techniques, Prodigy and Resetting, to provably estimate the distance to the solution $D$, which is needed to set the learning rate optimally. Our techniques are modifications of the D-Adaptation method for learning-rate-free learning. Our methods improve upon the convergence rate of D-Adaptation by a factor of $O(\sqrt{\log(D/d_0)})$, where $d_0$ is the initial estimate of $D$. We test our methods on 12 common logistic-regression benchmark datasets, VGG11 and ResNet-50 training on CIFAR10, ViT training on Imagenet, LSTM training on IWSLT14, DLRM training on Criteo dataset, VarNet on Knee MRI dataset, as well as RoBERTa and GPT transformer training on BookWiki. Our experimental results show that our approaches consistently outperform D-Adaptation and reach test accuracy values close to that of hand-tuned Adam.
Multi-modal unsupervised domain adaptation (MM-UDA) for 3D semantic segmentation is a practical solution to embed semantic understanding in autonomous systems without expensive point-wise annotations. While previous MM-UDA methods can achieve overall improvement, they suffer from significant class-imbalanced performance, restricting their adoption in real applications. This imbalanced performance is mainly caused by: 1) self-training with imbalanced data and 2) the lack of pixel-wise 2D supervision signals. In this work, we propose Multi-modal Prior Aided (MoPA) domain adaptation to improve the performance of rare objects. Specifically, we develop Valid Ground-based Insertion (VGI) to rectify the imbalance supervision signals by inserting prior rare objects collected from the wild while avoiding introducing artificial artifacts that lead to trivial solutions. Meanwhile, our SAM consistency loss leverages the 2D prior semantic masks from SAM as pixel-wise supervision signals to encourage consistent predictions for each object in the semantic mask. The knowledge learned from modal-specific prior is then shared across modalities to achieve better rare object segmentation. Extensive experiments show that our method achieves state-of-the-art performance on the challenging MM-UDA benchmark. Code will be available at //github.com/AronCao49/MoPA.
A watermarking algorithm is proposed in this paper to address the copyright protection issue of implicit 3D models. The algorithm involves embedding watermarks into the images in the training set through an embedding network, and subsequently utilizing the NeRF model for 3D modeling. A copyright verifier is employed to generate a backdoor image by providing a secret perspective as input to the neural radiation field. Subsequently, a watermark extractor is devised using the hyperparameterization method of the neural network to extract the embedded watermark image from that perspective. In a black box scenario, if there is a suspicion that the 3D model has been used without authorization, the verifier can extract watermarks from a secret perspective to verify network copyright. Experimental results demonstrate that the proposed algorithm effectively safeguards the copyright of 3D models. Furthermore, the extracted watermarks exhibit favorable visual effects and demonstrate robust resistance against various types of noise attacks.
Recently, Transformer-based text detection techniques have sought to predict polygons by encoding the coordinates of individual boundary vertices using distinct query features. However, this approach incurs a significant memory overhead and struggles to effectively capture the intricate relationships between vertices belonging to the same instance. Consequently, irregular text layouts often lead to the prediction of outlined vertices, diminishing the quality of results. To address these challenges, we present an innovative approach rooted in Sparse R-CNN: a cascade decoding pipeline for polygon prediction. Our method ensures precision by iteratively refining polygon predictions, considering both the scale and location of preceding results. Leveraging this stabilized regression pipeline, even employing just a single feature vector to guide polygon instance regression yields promising detection results. Simultaneously, the leverage of instance-level feature proposal substantially enhances memory efficiency (>50% less vs. the state-of-the-art method DPText-DETR) and reduces inference speed (>40% less vs. DPText-DETR) with minor performance drop on benchmarks.
Self-supervised knowledge-graph completion (KGC) relies on estimating a scoring model over (entity, relation, entity)-tuples, for example, by embedding an initial knowledge graph. Prediction quality can be improved by calibrating the scoring model, typically by adjusting the prediction thresholds using manually annotated examples. In this paper, we attempt for the first time cold-start calibration for KGC, where no annotated examples exist initially for calibration, and only a limited number of tuples can be selected for annotation. Our new method ACTC finds good per-relation thresholds efficiently based on a limited set of annotated tuples. Additionally to a few annotated tuples, ACTC also leverages unlabeled tuples by estimating their correctness with Logistic Regression or Gaussian Process classifiers. We also experiment with different methods for selecting candidate tuples for annotation: density-based and random selection. Experiments with five scoring models and an oracle annotator show an improvement of 7% points when using ACTC in the challenging setting with an annotation budget of only 10 tuples, and an average improvement of 4% points over different budgets.
In this paper we introduce a new algorithm for the \emph{$k$-Shortest Simple Paths} (\kspp{k}) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to \citet{Roditty12} that solves at most $2k$ instances of the \emph{Second Shortest Simple Path} (\kspp{2}) problem without specifying how this is done. We fill this gap using a novel approach: we turn the scalar \kspp{2} into instances of the Biobjective Shortest Path problem. Our experiments on grid graphs and on road networks show that the new algorithm is very efficient in practice.
Learning from human demonstrations (behavior cloning) is a cornerstone of robot learning. However, most behavior cloning algorithms require a large number of demonstrations to learn a task, especially for general tasks that have a large variety of initial conditions. Humans, however, can learn to complete tasks, even complex ones, after only seeing one or two demonstrations. Our work seeks to emulate this ability, using behavior cloning to learn a task given only a single human demonstration. We achieve this goal by using linear transforms to augment the single demonstration, generating a set of trajectories for a wide range of initial conditions. With these demonstrations, we are able to train a behavior cloning agent to successfully complete three block manipulation tasks. Additionally, we developed a novel addition to the temporal ensembling method used by action chunking agents during inference. By incorporating the standard deviation of the action predictions into the ensembling method, our approach is more robust to unforeseen changes in the environment, resulting in significant performance improvements.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.