亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Statistical quality control methods are noteworthy to producing standard production in manufacturing processes. In this regard, there are many classical manners to control the process. Many of them have a global assumption around the distributions of the process data. They are supposed to be Normal, but it is clear that it is not always valid for all processes. Such control charts made some wrong decisions that waste funds. So, the main question while working with multivariate data set is how to find the multivariate distribution of the data set, which saves the original dependency between variables. To our knowledge, a copula function guarantees dependence on the result function. It is not enough when there is no other fundamental information about the statistical society, and we have just a data set. Therefore, we apply the maximum entropy concept to deal with this situation. In this paper, first of all, we get the joint distribution of a data set from a manufacturing process that needs to be in-control while running the production process. Then, we get an elliptical control limit via the maximum copula entropy. Finally, we represent a practical example using the method. Average run lengths are calculated for some means and shifts to show the ability of the maximum copula entropy. In the end, two practical data examples are presented, and the results of our method are compared with the traditional way based on Fisher distribution.

相關內容

We provide the first useful and rigorous analysis of ensemble sampling for the stochastic linear bandit setting. In particular, we show that, under standard assumptions, for a $d$-dimensional stochastic linear bandit with an interaction horizon $T$, ensemble sampling with an ensemble of size of order $\smash{d \log T}$ incurs regret at most of the order $\smash{(d \log T)^{5/2} \sqrt{T}}$. Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$ -- which defeats the purpose of ensemble sampling -- while obtaining near $\smash{\sqrt{T}}$ order regret. Ours is also the first result that allows infinite action sets.

In personalized recommender systems, embeddings are often used to encode customer actions and items, and retrieval is then performed in the embedding space using approximate nearest neighbor search. However, this approach can lead to two challenges: 1) user embeddings can restrict the diversity of interests captured and 2) the need to keep them up-to-date requires an expensive, real-time infrastructure. In this paper, we propose a method that overcomes these challenges in a practical, industrial setting. The method dynamically updates customer profiles and composes a feed every two minutes, employing precomputed embeddings and their respective similarities. We tested and deployed this method to personalise promotional items at Bol, one of the largest e-commerce platforms of the Netherlands and Belgium. The method enhanced customer engagement and experience, leading to a significant 4.9% uplift in conversions.

Computer models play a crucial role in numerous scientific and engineering domains. To ensure the accuracy of simulations, it is essential to properly calibrate the input parameters of these models through statistical inference. While Bayesian inference is the standard approach for this task, employing Markov Chain Monte Carlo methods often encounters computational hurdles due to the costly evaluation of likelihood functions and slow mixing rates. Although variational inference (VI) can be a fast alternative to traditional Bayesian approaches, VI has limited applicability due to boundary issues and local optima problems. To address these challenges, we propose flexible VI methods based on deep generative models that do not require parametric assumptions on the variational distribution. We embed a surjective transformation in our framework to avoid posterior truncation at the boundary. Additionally, we provide theoretical conditions that guarantee the success of the algorithm. Furthermore, our temperature annealing scheme can prevent being trapped in local optima through a series of intermediate posteriors. We apply our method to infectious disease models and a geophysical model, illustrating that the proposed method can provide fast and accurate inference compared to its competitors.

The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a transformer to learn both local and global dependencies. In this work we describe a faster, more memory-efficient, and better-performing transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at //github.com/k2-fsa/icefall.

With the growth of internet of things (IoT) devices, cyberattacks, such as distributed denial of service, that exploit vulnerable devices infected with malware have increased. Therefore, vendors and users must keep their device firmware updated to eliminate vulnerabilities and quickly handle unknown cyberattacks. However, it is difficult for both vendors and users to continually keep the devices safe because vendors must provide updates quickly and the users must continuously manage the conditions of all deployed devices. Therefore, to ensure security, it is necessary for a system to adapt autonomously to changes in cyberattacks. In addition, it is important to consider network-side security that detects and filters anomalous traffic at the gateway to comprehensively protect those devices. This paper proposes a self-adaptive anomaly detection system for IoT traffic, including unknown attacks. The proposed system comprises a honeypot server and a gateway. The honeypot server continuously captures traffic and adaptively generates an anomaly detection model using real-time captured traffic. Thereafter, the gateway uses the generated model to detect anomalous traffic. Thus, the proposed system can adapt to unknown attacks to reflect pattern changes in anomalous traffic based on real-time captured traffic. Three experiments were conducted to evaluate the proposed system: a virtual experiment using pre-captured traffic from various regions across the world, a demonstration experiment using real-time captured traffic, and a virtual experiment using a public dataset containing the traffic generated by malware. The experimental results indicate that a system adaptable in real time to evolving cyberattacks is a novel approach for ensuring the comprehensive security of IoT devices against both known and unknown attacks.

Bit Layer Multiplier Accumulator (BLMAC) is an efficient method to perform dot products without multiplications that exploits the bit level sparsity of the weights. A total of 1,980,000 low, high, band pass and band stop type I FIR filters were generated by systematically sweeping through the cut off frequencies and by varying the number of taps from 55 to 255. After their coefficients were quantized to 16 bits, applying the filter using a BLMAC required, on average, from ~123.3 to ~513.6 additions, depending on the number of taps. A BLMAC dot product machine, specialised for 127 taps FIR filters, was designed for AMD FPGAs. The design footprint is ~110 LUTs, including coefficient and sample storage and is able to apply the filter in ~232 clock cycles on average. This implies a filtering rate of 1.4-3.4 Msamples/s, depending on the FPGA family.

As technology and gadgets continue to evolve, the need for bot-friendly and user-friendly internet becomes increasingly critical. This work discusses a methodology for implementation and feasibility of replacing traditional CAPTCHA mechanisms with Nano(XNO) cryptocurrency micropayments as a win-win solution and leverages the decentralized and secure nature of cryptocurrencies to introduce a micropayment-based authentication system. This approach not only enhances security by adding a financial barrier for automated bots but also provides a more seamless and efficient user experience. The benefits of this approach include reducing the burden on users while creating a socio-economic model that incentivizes internet service providers and content creators, even when accessed by bots. Furthermore, the integration of XNO micropayments could potentially contribute to the broader adoption and acceptance of digital currencies in everyday online transactions.

With the increasing complexity of software systems, it becomes very difficult to install, configure, adjust, and maintain them. As systems become more interconnected and diverse, system architects are less able to predict and design the interaction between components, deferring the handling of these issues to runtime. One of the important problems that occur during execution is system failures, which increase the need for self-healing systems. The main purpose of self-healing is to have an automatic system that can heal itself without human intervention. This system has predefined actions and procedures that are suitable for recovering the system from different failure modes. In this study, different self-healing methods are categorized and a summary of them is presented.

Traditional dataset retrieval systems index on metadata information rather than on the data values. Thus relying primarily on manual annotations and high-quality metadata, processes known to be labour-intensive and challenging to automate. We propose a method to support metadata enrichment with topic annotations of column headers using three Large Language Models (LLMs): ChatGPT-3.5, GoogleBard and GoogleGemini. We investigate the LLMs ability to classify column headers based on domain-specific topics from a controlled vocabulary. We evaluate our approach by assessing the internal consistency of the LLMs, the inter-machine alignment, and the human-machine agreement for the topic classification task. Additionally, we investigate the impact of contextual information (i.e. dataset description) on the classification outcomes. Our results suggest that ChatGPT and GoogleGemini outperform GoogleBard for internal consistency as well as LLM-human-alignment. Interestingly, we found that context had no impact on the LLMs performances. This work proposes a novel approach that leverages LLMs for text classification using a controlled topic vocabulary, which has the potential to facilitate automated metadata enrichment, thereby enhancing dataset retrieval and the Findability, Accessibility, Interoperability and Reusability (FAIR) of research data on the Web.

Record-breaking temperature events are now very frequently in the news, viewed as evidence of climate change. With this as motivation, we undertake the first substantial spatial modeling investigation of temperature record-breaking across years for any given day within the year. We work with a dataset consisting of over sixty years (1960-2021) of daily maximum temperatures across peninsular Spain. Formal statistical analysis of record-breaking events is an area that has received attention primarily within the probability community, dominated by results for the stationary record-breaking setting with some additional work addressing trends. Such effort is inadequate for analyzing actual record-breaking data. Effective analysis requires rich modeling of the indicator events which define record-breaking sequences. Resulting from novel and detailed exploratory data analysis, we propose hierarchical conditional models for the indicator events. After suitable model selection, we discover explicit trend behavior, necessary autoregression, significance of distance to the coast, useful interactions, helpful spatial random effects, and very strong daily random effects. Illustratively, the model estimates that global warming trends have increased the number of records expected in the past decade almost two-fold, 1.93 (1.89,1.98), but also estimates highly differentiated climate warming rates in space and by season.

北京阿比特科技有限公司