亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals - the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present a validation study conducted with 22 anesthesiologists of different competency levels from several hospitals in Israel. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Good face and content validity were exhibited in experienced users' perception of the simulator as realistic and well-targeted. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.

相關內容

The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals - the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.

It has been a hot research topic to enable machines to understand human emotions in multimodal contexts under dialogue scenarios, which is tasked with multimodal emotion analysis in conversation (MM-ERC). MM-ERC has received consistent attention in recent years, where a diverse range of methods has been proposed for securing better task performance. Most existing works treat MM-ERC as a standard multimodal classification problem and perform multimodal feature disentanglement and fusion for maximizing feature utility. Yet after revisiting the characteristic of MM-ERC, we argue that both the feature multimodality and conversational contextualization should be properly modeled simultaneously during the feature disentanglement and fusion steps. In this work, we target further pushing the task performance by taking full consideration of the above insights. On the one hand, during feature disentanglement, based on the contrastive learning technique, we devise a Dual-level Disentanglement Mechanism (DDM) to decouple the features into both the modality space and utterance space. On the other hand, during the feature fusion stage, we propose a Contribution-aware Fusion Mechanism (CFM) and a Context Refusion Mechanism (CRM) for multimodal and context integration, respectively. They together schedule the proper integrations of multimodal and context features. Specifically, CFM explicitly manages the multimodal feature contributions dynamically, while CRM flexibly coordinates the introduction of dialogue contexts. On two public MM-ERC datasets, our system achieves new state-of-the-art performance consistently. Further analyses demonstrate that all our proposed mechanisms greatly facilitate the MM-ERC task by making full use of the multimodal and context features adaptively. Note that our proposed methods have the great potential to facilitate a broader range of other conversational multimodal tasks.

We study range spaces, where the ground set consists of polygonal curves and the ranges are balls defined by an elastic distance measure. Such range spaces appear in various applications like classification, range counting, density estimation and clustering when the instances are trajectories or time series. The Vapnik-Chervonenkis dimension (VC-dimension) plays an important role when designing algorithms for these range spaces. We show for the Fr\'echet distance and the Hausdorff distance that the VC-dimension is upper-bounded by $O(dk \log(km))$, where $k$ is the complexity of the center of a ball, $m$ is the complexity of the curve in the ground set, and $d$ is the ambient dimension. For $d \geq 4$ this bound is tight in each of the parameters $d,k$ and $m$ separately. Our approach rests on an argument that was first used by Goldberg and Jerrum and later improved by Anthony and Bartlett. The idea is to interpret the ranges as combinations of sign values of polynomials and to bound the growth function via the number of connected components in an arrangement of zero sets of polynomials.

High-throughput phenotyping (HTP) of seeds, also known as seed phenotyping, is the comprehensive assessment of complex seed traits such as growth, development, tolerance, resistance, ecology, yield, and the measurement of parameters that form more complex traits. One of the key aspects of seed phenotyping is cereal yield estimation that the seed production industry relies upon to conduct their business. While mechanized seed kernel counters are available in the market currently, they are often priced high and sometimes outside the range of small scale seed production firms' affordability. The development of object tracking neural network models such as You Only Look Once (YOLO) enables computer scientists to design algorithms that can estimate cereal yield inexpensively. The key bottleneck with neural network models is that they require a plethora of labelled training data before they can be put to task. We demonstrate that the use of synthetic imagery serves as a feasible substitute to train neural networks for object tracking that includes the tasks of object classification and detection. Furthermore, we propose a seed kernel counter that uses a low-cost mechanical hopper, trained YOLOv8 neural network model, and object tracking algorithms on StrongSORT and ByteTrack to estimate cereal yield from videos. The experiment yields a seed kernel count with an accuracy of 95.2\% and 93.2\% for Soy and Wheat respectively using the StrongSORT algorithm, and an accuray of 96.8\% and 92.4\% for Soy and Wheat respectively using the ByteTrack algorithm.

We show that the essential properties of entropy (monotonicity, additivity and subadditivity) are consequences of entropy being a monoidal natural transformation from the under category functor $-/\mathsf{LProb}_{\rho}$ (where $\mathsf{LProb}_{\rho}$ is category of $\ell_{\rho}$ discrete probability spaces) to $\Delta_{\mathbb{R}}$. Moreover, the Shannon entropy can be characterized as the universal monoidal natural transformation from $-/\mathsf{LProb}_{\rho}$ to the category of "strongly regularly ordered" vector spaces (a reflective subcategory of the lax-slice 2-category over $\mathsf{MonCat}_{\ell}$ in the 2-category of monoidal categories), providing a succinct characterization of Shannon entropy as a reflection arrow. We can likewise define entropy for every category with a monoidal structure on its under categories (e.g. the category of finite abelian groups, the category of finite inhabited sets, the category of finite dimensional vector spaces, and the augmented simplex category) via the reflection arrow to the reflective subcategory of strongly regularly ordered vector spaces. This implies that all these entropies over different categories are components of a single natural transformation (the unit of the idempotent monad), allowing us to connect these entropies in a natural manner. We also provide a universal characterization of the conditional Shannon entropy based on the chain rule which, unlike the characterization of information loss by Baez, Fritz and Leinster, does not require any continuity assumption.

Physics Informed Neural Networks is a numerical method which uses neural networks to approximate solutions of partial differential equations. It has received a lot of attention and is currently used in numerous physical and engineering problems. The mathematical understanding of these methods is limited, and in particular, it seems that, a consistent notion of stability is missing. Towards addressing this issue we consider model problems of partial differential equations, namely linear elliptic and parabolic PDEs. We consider problems with different stability properties, and problems with time discrete training. Motivated by tools of nonlinear calculus of variations we systematically show that coercivity of the energies and associated compactness provide the right framework for stability. For time discrete training we show that if these properties fail to hold then methods may become unstable. Furthermore, using tools of $\Gamma-$convergence we provide new convergence results for weak solutions by only requiring that the neural network spaces are chosen to have suitable approximation properties.

Medical image segmentation is an important step in medical image analysis, especially as a crucial prerequisite for efficient disease diagnosis and treatment. The use of deep learning for image segmentation has become a prevalent trend. The widely adopted approach currently is U-Net and its variants. Additionally, with the remarkable success of pre-trained models in natural language processing tasks, transformer-based models like TransUNet have achieved desirable performance on multiple medical image segmentation datasets. In this paper, we conduct a survey of the most representative four medical image segmentation models in recent years. We theoretically analyze the characteristics of these models and quantitatively evaluate their performance on two benchmark datasets (i.e., Tuberculosis Chest X-rays and ovarian tumors). Finally, we discuss the main challenges and future trends in medical image segmentation. Our work can assist researchers in the related field to quickly establish medical segmentation models tailored to specific regions.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司