亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A data-driven analysis method known as dynamic mode decomposition (DMD) approximates the linear Koopman operator on projected space. In the spirit of Johnson-Lindenstrauss Lemma, we will use random projection to estimate the DMD modes in reduced dimensional space. In practical applications, snapshots are in high dimensional observable space and the DMD operator matrix is massive. Hence, computing DMD with the full spectrum is infeasible, so our main computational goal is estimating the eigenvalue and eigenvectors of the DMD operator in a projected domain. We will generalize the current algorithm to estimate a projected DMD operator. We focus on a powerful and simple random projection algorithm that will reduce the computational and storage cost. While clearly, a random projection simplifies the algorithmic complexity of a detailed optimal projection, as we will show, generally the results can be excellent nonetheless, and quality understood through a well-developed theory of random projections. We will demonstrate that modes can be calculated for a low cost by the projected data with sufficient dimension. Keyword: Koopman Operator, Dynamic Mode Decomposition(DMD), Johnson-Lindenstrauss Lemma, Random Projection, Data-driven method.

相關內容

We address the problem of model selection for the finite horizon episodic Reinforcement Learning (RL) problem where the transition kernel $P^*$ belongs to a family of models $\mathcal{P}^*$ with finite metric entropy. In the model selection framework, instead of $\mathcal{P}^*$, we are given $M$ nested families of transition kernels $\cP_1 \subset \cP_2 \subset \ldots \subset \cP_M$. We propose and analyze a novel algorithm, namely \emph{Adaptive Reinforcement Learning (General)} (\texttt{ARL-GEN}) that adapts to the smallest such family where the true transition kernel $P^*$ lies. \texttt{ARL-GEN} uses the Upper Confidence Reinforcement Learning (\texttt{UCRL}) algorithm with value targeted regression as a blackbox and puts a model selection module at the beginning of each epoch. Under a mild separability assumption on the model classes, we show that \texttt{ARL-GEN} obtains a regret of $\Tilde{\mathcal{O}}(d_{\mathcal{E}}^*H^2+\sqrt{d_{\mathcal{E}}^* \mathbb{M}^* H^2 T})$, with high probability, where $H$ is the horizon length, $T$ is the total number of steps, $d_{\mathcal{E}}^*$ is the Eluder dimension and $\mathbb{M}^*$ is the metric entropy corresponding to $\mathcal{P}^*$. Note that this regret scaling matches that of an oracle that knows $\mathcal{P}^*$ in advance. We show that the cost of model selection for \texttt{ARL-GEN} is an additive term in the regret having a weak dependence on $T$. Subsequently, we remove the separability assumption and consider the setup of linear mixture MDPs, where the transition kernel $P^*$ has a linear function approximation. With this low rank structure, we propose novel adaptive algorithms for model selection, and obtain (order-wise) regret identical to that of an oracle with knowledge of the true model class.

We provide a global convergence proof of the recently proposed sequential homotopy method with an inexact Krylov--semismooth-Newton method employed as a local solver. The resulting method constitutes an active-set method in function space. After discretization, it allows for efficient application of Krylov-subspace methods. For a certain class of optimal control problems with PDE constraints, in which the control enters the Lagrangian only linearly, we propose and analyze an efficient, parallelizable, symmetric positive definite preconditioner based on a double Schur complement approach. We conclude with numerical results for a badly conditioned and highly nonlinear benchmark optimization problem with elliptic partial differential equations and control bounds. The resulting method is faster than using direct linear algebra for the 2D benchmark and allows for the parallel solution of large 3D problems.

Randomization has shown catalyzing effects in linear algebra with promising perspectives for tackling computational challenges in large-scale problems. For solving a system of linear equations, we demonstrate the convergence of a broad class of algorithms that at each step pick a subset of $n$ equations at random and update the iterate with the orthogonal projection to the subspace those equations represent. We identify, in this context, a specific degree-$n$ polynomial that non-linearly transforms the singular values of the system towards equalization. This transformation to singular values and the corresponding condition number then characterizes the expected convergence rate of iterations. As a consequence, our results specify the convergence rate of the stochastic gradient descent algorithm, in terms of the mini-batch size $n$, when used for solving systems of linear equations.

The modeling and control of complex physical systems are essential in real-world problems. We propose a novel framework that is generally applicable to solving PDE-constrained optimal control problems by introducing surrogate models for PDE solution operators with special regularizers. The procedure of the proposed framework is divided into two phases: solution operator learning for PDE constraints (Phase 1) and searching for optimal control (Phase 2). Once the surrogate model is trained in Phase 1, the optimal control can be inferred in Phase 2 without intensive computations. Our framework can be applied to both data-driven and data-free cases. We demonstrate the successful application of our method to various optimal control problems for different control variables with diverse PDE constraints from the Poisson equation to Burgers' equation.

Kernel principal component analysis (KPCA) is a well-recognized nonlinear dimensionality reduction method that has been widely used in nonlinear fault detection tasks. As a kernel trick-based method, KPCA inherits two major problems. First, the form and the parameters of the kernel function are usually selected blindly, depending seriously on trial-and-error. As a result, there may be serious performance degradation in case of inappropriate selections. Second, at the online monitoring stage, KPCA has much computational burden and poor real-time performance, because the kernel method requires to leverage all the offline training data. In this work, to deal with the two drawbacks, a learnable faster realization of the conventional KPCA is proposed. The core idea is to parameterize all feasible kernel functions using the novel nonlinear DAE-FE (deep autoencoder based feature extraction) framework and propose DAE-PCA (deep autoencoder based principal component analysis) approach in detail. The proposed DAE-PCA method is proved to be equivalent to KPCA but has more advantage in terms of automatic searching of the most suitable nonlinear high-dimensional space according to the inputs. Furthermore, the online computational efficiency improves by approximately 100 times compared with the conventional KPCA. With the Tennessee Eastman (TE) process benchmark, the effectiveness and superiority of the proposed method is illustrated.

We propose a novel framework for constructing linear time-invariant (LTI) models for data-driven representations of the Koopman operator for a class of stable nonlinear dynamics. The Koopman operator (generator) lifts a finite-dimensional nonlinear system to a possibly infinite-dimensional linear feature space. To utilize it for modeling, one needs to discover finite-dimensional representations of the Koopman operator. Learning suitable features is challenging, as one needs to learn LTI features that are both Koopman-invariant (evolve linearly under the dynamics) as well as relevant (spanning the original state) - a generally unsupervised learning task. For a theoretically well-founded solution to this problem, we propose learning Koopman-invariant coordinates by composing a diffeomorphic learner with a lifted aggregate system of a latent linear model. Using an unconstrained parameterization of stable matrices along with the aforementioned feature construction, we learn the Koopman operator features without assuming a predefined library of functions or knowing the spectrum, while ensuring stability regardless of the operator approximation accuracy. We demonstrate the superior efficacy of the proposed method in comparison to a state-of-the-art method on the well-known LASA handwriting dataset.

Linear kinetic transport equations play a critical role in optical tomography, radiative transfer and neutron transport. The fundamental difficulty hampering their efficient and accurate numerical resolution lies in the high dimensionality of the physical and velocity/angular variables and the fact that the problem is multiscale in nature. Leveraging the existence of a hidden low-rank structure hinted by the diffusive limit, in this work, we design and test the angular-space reduced order model for the linear radiative transfer equation, the first such effort based on the celebrated reduced basis method (RBM). Our method is built upon a high-fidelity solver employing the discrete ordinates method in the angular space, an asymptotic preserving upwind discontinuous Galerkin method for the physical space, and an efficient synthetic accelerated source iteration for the resulting linear system. Addressing the challenge of the parameter values (or angular directions) being coupled through an integration operator, the first novel ingredient of our method is an iterative procedure where the macroscopic density is constructed from the RBM snapshots, treated explicitly and allowing a transport sweep, and then updated afterwards. A greedy algorithm can then proceed to adaptively select the representative samples in the angular space and form a surrogate solution space. The second novelty is a least-squares density reconstruction strategy, at each of the relevant physical locations, enabling the robust and accurate integration over an arbitrarily unstructured set of angular samples toward the macroscopic density. Numerical experiments indicate that our method is effective for computational cost reduction in a variety of regimes.

We consider a least-squares variational kernel-based method for numerical solution of second order elliptic partial differential equations on a multi-dimensional domain. In this setting it is not assumed that the differential operator is self-adjoint or positive definite as it should be in the Rayleigh-Ritz setting. However, the new scheme leads to a symmetric and positive definite algebraic system of equations. Moreover, the resulting method does not rely on certain subspaces satisfying the boundary conditions. The trial space for discretization is provided via standard kernels that reproduce the Sobolev spaces as their native spaces. The error analysis of the method is given, but it is partly subjected to an inverse inequality on the boundary which is still an open problem. The condition number of the final linear system is approximated in terms of the smoothness of the kernel and the discretization quality. Finally, the results of some computational experiments support the theoretical error bounds.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司