亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) has been widely adopted for collaborative training on decentralized data. However, it faces the challenges of data, system, and model heterogeneity. This has inspired the emergence of model-heterogeneous personalized federated learning (MHPFL). Nevertheless, the problem of ensuring data and model privacy, while achieving good model performance and keeping communication and computation costs low remains open in MHPFL. To address this problem, we propose a model-heterogeneous personalized Federated learning with Mixture of Experts (pFedMoE) method. It assigns a shared homogeneous small feature extractor and a local gating network for each client's local heterogeneous large model. Firstly, during local training, the local heterogeneous model's feature extractor acts as a local expert for personalized feature (representation) extraction, while the shared homogeneous small feature extractor serves as a global expert for generalized feature extraction. The local gating network produces personalized weights for extracted representations from both experts on each data sample. The three models form a local heterogeneous MoE. The weighted mixed representation fuses generalized and personalized features and is processed by the local heterogeneous large model's header with personalized prediction information. The MoE and prediction header are updated simultaneously. Secondly, the trained local homogeneous small feature extractors are sent to the server for cross-client information fusion via aggregation. Overall, pFedMoE enhances local model personalization at a fine-grained data level, while supporting model heterogeneity.

相關內容

While the recommendation system (RS) has advanced significantly through deep learning, current RS approaches usually train and fine-tune models on task-specific datasets, limiting their generalizability to new recommendation tasks and their ability to leverage external knowledge due to model scale and data size constraints. Thus, we designed an LLM-powered autonomous recommender agent, RecMind, which is capable of leveraging external knowledge, utilizing tools with careful planning to provide zero-shot personalized recommendations. We propose a Self-Inspiring algorithm to improve the planning ability. At each intermediate step, the LLM self-inspires to consider all previously explored states to plan for the next step. This mechanism greatly improves the model's ability to comprehend and utilize historical information in planning for recommendation. We evaluate RecMind's performance in various recommendation scenarios. Our experiment shows that RecMind outperforms existing zero/few-shot LLM-based recommendation baseline methods in various tasks and achieves comparable performance to a fully trained recommendation model P5.

Contrastive learning has recently achieved compelling performance in unsupervised sentence representation. As an essential element, data augmentation protocols, however, have not been well explored. The pioneering work SimCSE resorting to a simple dropout mechanism (viewed as continuous augmentation) surprisingly dominates discrete augmentations such as cropping, word deletion, and synonym replacement as reported. To understand the underlying rationales, we revisit existing approaches and attempt to hypothesize the desiderata of reasonable data augmentation methods: balance of semantic consistency and expression diversity. We then develop three simple yet effective discrete sentence augmentation schemes: punctuation insertion, modal verbs, and double negation. They act as minimal noises at lexical level to produce diverse forms of sentences. Furthermore, standard negation is capitalized on to generate negative samples for alleviating feature suppression involved in contrastive learning. We experimented extensively with semantic textual similarity on diverse datasets. The results support the superiority of the proposed methods consistently.

A key feature of federated learning (FL) is to preserve the data privacy of end users. However, there still exist potential privacy leakage in exchanging gradients under FL. As a result, recent research often explores the differential privacy (DP) approaches to add noises to the computing results to address privacy concerns with low overheads, which however degrade the model performance. In this paper, we strike the balance of data privacy and efficiency by utilizing the pervasive social connections between users. Specifically, we propose SCFL, a novel Social-aware Clustered Federated Learning scheme, where mutually trusted individuals can freely form a social cluster and aggregate their raw model updates (e.g., gradients) inside each cluster before uploading to the cloud for global aggregation. By mixing model updates in a social group, adversaries can only eavesdrop the social-layer combined results, but not the privacy of individuals. We unfold the design of SCFL in three steps.i) Stable social cluster formation. Considering users' heterogeneous training samples and data distributions, we formulate the optimal social cluster formation problem as a federation game and devise a fair revenue allocation mechanism to resist free-riders. ii) Differentiated trust-privacy mapping}. For the clusters with low mutual trust, we design a customizable privacy preservation mechanism to adaptively sanitize participants' model updates depending on social trust degrees. iii) Distributed convergence}. A distributed two-sided matching algorithm is devised to attain an optimized disjoint partition with Nash-stable convergence. Experiments on Facebook network and MNIST/CIFAR-10 datasets validate that our SCFL can effectively enhance learning utility, improve user payoff, and enforce customizable privacy protection.

Recently, multimodal contrastive learning (MMCL) approaches, such as CLIP, have achieved a remarkable success in learning representations that are robust against distribution shift and generalize to new domains. Despite the empirical success, the mechanism behind learning such generalizable representations is not understood. In this work, we rigorously analyze this problem and uncover two mechanisms behind MMCL's robustness: \emph{intra-class contrasting}, which allows the model to learn features with a high variance, and \emph{inter-class feature sharing}, where annotated details in one class help learning other classes better. Both mechanisms prevent spurious features that are over-represented in the training data to overshadow the generalizable core features. This yields superior zero-shot classification accuracy under distribution shift. Furthermore, we theoretically demonstrate the benefits of using rich captions on robustness and explore the effect of annotating different types of details in the captions. We validate our theoretical findings through experiments, including a well-designed synthetic experiment and an experiment involving training CLIP models on MSCOCO/Conceptual Captions and evaluating them on shifted ImageNets.

Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: //lei-kun.github.io/uni-o4/ .

Graph Neural Networks (GNNs) have achieved great success in learning with graph-structured data. Privacy concerns have also been raised for the trained models which could expose the sensitive information of graphs including both node features and the structure information. In this paper, we aim to achieve node-level differential privacy (DP) for training GNNs so that a node and its edges are protected. Node DP is inherently difficult for GNNs because all direct and multi-hop neighbors participate in the calculation of gradients for each node via layer-wise message passing and there is no bound on how many direct and multi-hop neighbors a node can have, so existing DP methods will result in high privacy cost or poor utility due to high node sensitivity. We propose a Decoupled GNN with Differentially Private Approximate Personalized PageRank (DPAR) for training GNNs with an enhanced privacy-utility tradeoff. The key idea is to decouple the feature projection and message passing via a DP PageRank algorithm which learns the structure information and uses the top-$K$ neighbors determined by the PageRank for feature aggregation. By capturing the most important neighbors for each node and avoiding the layer-wise message passing, it bounds the node sensitivity and achieves improved privacy-utility tradeoff compared to layer-wise perturbation based methods. We theoretically analyze the node DP guarantee for the two processes combined together and empirically demonstrate better utilities of DPAR with the same level of node DP compared with state-of-the-art methods.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.

北京阿比特科技有限公司