亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Private synthetic data sharing is preferred as it keeps the distribution and nuances of original data compared to summary statistics. The state-of-the-art methods adopt a select-measure-generate paradigm, but measuring large domain marginals still results in much error and allocating privacy budget iteratively is still difficult. To address these issues, our method employs a partition-based approach that effectively reduces errors and improves the quality of synthetic data, even with a limited privacy budget. Results from our experiments demonstrate the superiority of our method over existing approaches. The synthetic data produced using our approach exhibits improved quality and utility, making it a preferable choice for private synthetic data sharing.

相關內容

Score-based diffusion models have emerged as one of the most promising frameworks for deep generative modelling, due to their state-of-the art performance in many generation tasks while relying on mathematical foundations such as stochastic differential equations (SDEs) and ordinary differential equations (ODEs). Empirically, it has been reported that ODE based samples are inferior to SDE based samples. In this paper we rigorously describe the range of dynamics and approximations that arise when training score-based diffusion models, including the true SDE dynamics, the neural approximations, the various approximate particle dynamics that result, as well as their associated Fokker--Planck equations and the neural network approximations of these Fokker--Planck equations. We systematically analyse the difference between the ODE and SDE dynamics of score-based diffusion models, and link it to an associated Fokker--Planck equation. We derive a theoretical upper bound on the Wasserstein 2-distance between the ODE- and SDE-induced distributions in terms of a Fokker--Planck residual. We also show numerically that conventional score-based diffusion models can exhibit significant differences between ODE- and SDE-induced distributions which we demonstrate using explicit comparisons. Moreover, we show numerically that reducing the Fokker--Planck residual by adding it as an additional regularisation term leads to closing the gap between ODE- and SDE-induced distributions. Our experiments suggest that this regularisation can improve the distribution generated by the ODE, however that this can come at the cost of degraded SDE sample quality.

The recently proposed fixed-X knockoff is a powerful variable selection procedure that controls the false discovery rate (FDR) in any finite-sample setting, yet its theoretical insights are difficult to show beyond Gaussian linear models. In this paper, we make the first attempt to extend the fixed-X knockoff to partially linear models by using generalized knockoff features, and propose a new stability generalized knockoff (Stab-GKnock) procedure by incorporating selection probability as feature importance score. We provide FDR control and power guarantee under some regularity conditions. In addition, we propose a two-stage method under high dimensionality by introducing a new joint feature screening procedure, with guaranteed sure screening property. Extensive simulation studies are conducted to evaluate the finite-sample performance of the proposed method. A real data example is also provided for illustration.

A simple way of obtaining robust estimates of the "center" (or the "location") and of the "scatter" of a dataset is to use the maximum likelihood estimate with a class of heavy-tailed distributions, regardless of the "true" distribution generating the data. We observe that the maximum likelihood problem for the Cauchy distributions, which have particularly heavy tails, is geodesically convex and therefore efficiently solvable (Cauchy distributions are parametrized by the upper half plane, i.e. by the hyperbolic plane). Moreover, it has an appealing geometrical meaning: the datapoints, living on the boundary of the hyperbolic plane, are attracting the parameter by unit forces, and we search the point where these forces are in equilibrium. This picture generalizes to several classes of multivariate distributions with heavy tails, including, in particular, the multivariate Cauchy distributions. The hyperbolic plane gets replaced by symmetric spaces of noncompact type. Geodesic convexity gives us an efficient numerical solution of the maximum likelihood problem for these distribution classes. This can then be used for robust estimates of location and spread, thanks to the heavy tails of these distributions.

A system of coupled oscillators on an arbitrary graph is locally driven by the tendency to mutual synchronization between nearby oscillators, but can and often exhibit nonlinear behavior on the whole graph. Understanding such nonlinear behavior has been a key challenge in predicting whether all oscillators in such a system will eventually synchronize. In this paper, we demonstrate that, surprisingly, such nonlinear behavior of coupled oscillators can be effectively linearized in certain latent dynamic spaces. The key insight is that there is a small number of `latent dynamics filters', each with a specific association with synchronizing and non-synchronizing dynamics on subgraphs so that any observed dynamics on subgraphs can be approximated by a suitable linear combination of such elementary dynamic patterns. Taking an ensemble of subgraph-level predictions provides an interpretable predictor for whether the system on the whole graph reaches global synchronization. We propose algorithms based on supervised matrix factorization to learn such latent dynamics filters. We demonstrate that our method performs competitively in synchronization prediction tasks against baselines and black-box classification algorithms, despite its simple and interpretable architecture.

Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: //github.com/optray/PIANO.

The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.

We address the communication overhead of distributed sparse matrix-(multiple)-vector multiplication in the context of large-scale eigensolvers, using filter diagonalization as an example. The basis of our study is a performance model which includes a communication metric that is computed directly from the matrix sparsity pattern without running any code. The performance model quantifies to which extent scalability and parallel efficiency are lost due to communication overhead. To restore scalability, we identify two orthogonal layers of parallelism in the filter diagonalization technique. In the horizontal layer the rows of the sparse matrix are distributed across individual processes. In the vertical layer bundles of multiple vectors are distributed across separate process groups. An analysis in terms of the communication metric predicts that scalability can be restored if, and only if, one implements the two orthogonal layers of parallelism via different distributed vector layouts. Our theoretical analysis is corroborated by benchmarks for application matrices from quantum and solid state physics, road networks, and nonlinear programming. We finally demonstrate the benefits of using orthogonal layers of parallelism with two exemplary application cases -- an exciton and a strongly correlated electron system -- which incur either small or large communication overhead.

Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achievedby acquiring and processing multiple images of the sample under different illumination conditions.One of the simplest techniques, Random Illumination Microscopy (RIM), forms the super-resolvedimage from the variance of images obtained with random speckled illuminations. However, thevalidity of this process has not been fully theorized. In this work, we characterize mathematicallythe sample information contained in the variance of diffraction-limited speckled images as a functionof the statistical properties of the illuminations. We show that an unambiguous two-fold resolutiongain is obtained when the speckle correlation length coincides with the width of the observationpoint spread function. Last, we analyze the difference between the variance-based techniques usingrandom speckled illuminations (as in RIM) and those obtained using random fluorophore activation(as in Super-resolution Optical Fluctuation Imaging, SOFI).

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司