亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) can exhibit social biases. Given LLMs' increasing integration into workplace software, these biases may impact workers' well-being and may disproportionately impact minoritized communities. This short paper investigates how co-writing with an LLM impacts three measures related to user's well-being: feelings of inclusion, control, and ownership over their work. In an online experiment, participants wrote hypothetical job promotion requests to their boss and using either hesitant or self-assured auto-complete suggestions from an LLM. Afterward, participants reported their feelings of inclusion, control, and ownership. We found that the style of the AI model did not impact perceived inclusion. Furthermore, individuals with higher perceived inclusion also perceived greater agency and ownership, an effect more strongly impacting participants of minoritized genders. Lastly, feelings of inclusion can mitigate a loss of control and agency when accepting more AI suggestions. Future work should explore feelings of inclusion in AI-written communication.

相關內容

Feel,是一(yi)款科學地(di)激勵用戶實現健康生活目標(biao)的(de)應用。 想要減肥,塑形,增(zeng)高,提升(sheng)活力,睡個好覺,產后恢復……?針對不同的(de)目標(biao),Feel為您(nin)定制個性化的(de)健康生活計劃,并通過各種記錄工(gong)具和激勵手段幫您(nin)實現目標(biao)。

Hybrid human-ML systems increasingly make consequential decisions in a wide range of domains. These systems are often introduced with the expectation that the combined human-ML system will achieve complementary performance, that is, the combined decision-making system will be an improvement compared with either decision-making agent in isolation. However, empirical results have been mixed, and existing research rarely articulates the sources and mechanisms by which complementary performance is expected to arise. Our goal in this work is to provide conceptual tools to advance the way researchers reason and communicate about human-ML complementarity. Drawing upon prior literature in human psychology, machine learning, and human-computer interaction, we propose a taxonomy characterizing distinct ways in which human and ML-based decision-making can differ. In doing so, we conceptually map potential mechanisms by which combining human and ML decision-making may yield complementary performance, developing a language for the research community to reason about design of hybrid systems in any decision-making domain. To illustrate how our taxonomy can be used to investigate complementarity, we provide a mathematical aggregation framework to examine enabling conditions for complementarity. Through synthetic simulations, we demonstrate how this framework can be used to explore specific aspects of our taxonomy and shed light on the optimal mechanisms for combining human-ML judgments

In human interactions, emotion recognition is crucial. For this reason, the topic of computer-vision approaches for automatic emotion recognition is currently being extensively researched. Processing multi-channel electroencephalogram (EEG) information is one of the most researched methods for automatic emotion recognition. This paper presents a new model for an affective computing-driven Quality of Experience (QoE) prediction. In order to validate the proposed model, a publicly available dataset is used. The dataset contains EEG, ECG, and respiratory data and is focused on a multimedia QoE assessment context. The EEG data are retained on which the differential entropy and the power spectral density are calculated with an observation window of three seconds. These two features were extracted to train several deep-learning models to investigate the possibility of predicting QoE with five different factors. The performance of these models is compared, and the best model is optimized to improve the results. The best results were obtained with an LSTM-based model, presenting an F1-score from 68% to 78%. An analysis of the model and its features shows that the Delta frequency band is the least necessary, that two electrodes have a higher importance, and that two other electrodes have a very low impact on the model's performances.

The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol. It might over-emphasize the matching with the ground-truth items or utterances generated by human annotators, while neglecting the interactive nature of being a capable CRS. To overcome the limitation, we further propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators. Our evaluation approach can simulate various interaction scenarios between users and systems. Through the experiments on two publicly available CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and easy-to-use evaluation framework for future research endeavors. The codes and data are publicly available at //github.com/RUCAIBox/iEvaLM-CRS.

As a powerful framework for graph representation learning, Graph Neural Networks (GNNs) have garnered significant attention in recent years. However, to the best of our knowledge, there has been no formal analysis of the logical expressiveness of GNNs as Boolean node classifiers over multi-relational graphs, where each edge carries a specific relation type. In this paper, we investigate $\mathcal{FOC}_2$, a fragment of first-order logic with two variables and counting quantifiers. On the negative side, we demonstrate that the R$^2$-GNN architecture, which extends the local message passing GNN by incorporating global readout, fails to capture $\mathcal{FOC}_2$ classifiers in the general case. Nevertheless, on the positive side, we establish that R$^2$-GNNs models are equivalent to $\mathcal{FOC}_2$ classifiers under certain restricted yet reasonable scenarios. To address the limitations of R$^2$-GNNs regarding expressiveness, we propose a simple graph transformation technique, akin to a preprocessing step, which can be executed in linear time. This transformation enables R$^2$-GNNs to effectively capture any $\mathcal{FOC}_2$ classifiers when applied to the "transformed" input graph. Moreover, we extend our analysis of expressiveness and graph transformation to temporal graphs, exploring several temporal GNN architectures and providing an expressiveness hierarchy for them. To validate our findings, we implement R$^2$-GNNs and the graph transformation technique and conduct empirical tests in node classification tasks against various well-known GNN architectures that support multi-relational or temporal graphs. Our experimental results consistently demonstrate that R$^2$-GNN with the graph transformation outperforms the baseline methods on both synthetic and real-world datasets

Neural machine translation (NMT) for low-resource local languages in Indonesia faces significant challenges, including the need for a representative benchmark and limited data availability. This work addresses these challenges by comprehensively analyzing training NMT systems for four low-resource local languages in Indonesia: Javanese, Sundanese, Minangkabau, and Balinese. Our study encompasses various training approaches, paradigms, data sizes, and a preliminary study into using large language models for synthetic low-resource languages parallel data generation. We reveal specific trends and insights into practical strategies for low-resource language translation. Our research demonstrates that despite limited computational resources and textual data, several of our NMT systems achieve competitive performances, rivaling the translation quality of zero-shot gpt-3.5-turbo. These findings significantly advance NMT for low-resource languages, offering valuable guidance for researchers in similar contexts.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Temporal sentence grounding in videos (TSGV), a.k.a., natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司