亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training Deep Learning (DL) models require large, high-quality datasets, often assembled with data from different institutions. Federated Learning (FL) has been emerging as a method for privacy-preserving pooling of datasets employing collaborative training from different institutions by iteratively globally aggregating locally trained models. One critical performance challenge of FL is operating on datasets not independently and identically distributed (non-IID) among the federation participants. Even though this fragility cannot be eliminated, it can be debunked by a suitable optimization of two hyper-parameters: layer normalization methods and collaboration frequency selection. In this work, we benchmark five different normalization layers for training Neural Networks (NNs), two families of non-IID data skew, and two datasets. Results show that Batch Normalization, widely employed for centralized DL, is not the best choice for FL, whereas Group and Layer Normalization consistently outperform Batch Normalization. Similarly, frequent model aggregation decreases convergence speed and mode quality.

相關內容

When fitting the learning data of an individual to algorithm-like learning models, the observations are so dependent and non-stationary that one may wonder what the classical Maximum Likelihood Estimator (MLE) could do, even if it is the usual tool applied to experimental cognition. Our objective in this work is to show that the estimation of the learning rate cannot be efficient if the learning rate is constant in the classical Exp3 (Exponential weights for Exploration and Exploitation) algorithm. Secondly, we show that if the learning rate decreases polynomially with the sample size, then the prediction error and in some cases the estimation error of the MLE satisfy bounds in probability that decrease at a polynomial rate.

In the last decade, most research in Machine Learning contributed to the improvement of existing models, with the aim of increasing the performance of neural networks for the solution of a variety of different tasks. However, such advancements often come at the cost of an increase of model memory and computational requirements. This represents a significant limitation for the deployability of research output in realistic settings, where the cost, the energy consumption, and the complexity of the framework play a crucial role. To solve this issue, the designer should search for models that maximise the performance while limiting its footprint. Typical approaches to reach this goal rely either on manual procedures, which cannot guarantee the optimality of the final design, or upon Neural Architecture Search algorithms to automatise the process, at the expenses of extremely high computational time. This paper provides a solution for the fast identification of a neural network that maximises the model accuracy while preserving size and computational constraints typical of tiny devices. Our approach, named FreeREA, is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures during the search, thus without need of model training. Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design; ii) it outperforms State of the Art training-based and training-free techniques in all the datasets and benchmarks considered, and iii) it can easily generalise to constrained scenarios, representing a competitive solution for fast Neural Architecture Search in generic constrained applications. The code is available at \url{//github.com/NiccoloCavagnero/FreeREA}.

Incrementality experiments compare customers exposed to a marketing action designed to increase sales to those randomly assigned to a control group. These experiments suffer from noisy responses which make precise estimation of the average treatment effect (ATE) and marketing ROI difficult. We develop a model that improves the precision by estimating separate treatment effects for three latent strata defined by potential outcomes in the experiment -- customers who would buy regardless of ad exposure, those who would buy only if exposed to ads and those who would not buy regardless. The overall ATE is estimated by averaging the strata-level effects, and this produces a more precise estimator of the ATE over a wide range of conditions typical of marketing experiments. Analytical results and simulations show that the method decreases the sampling variance of the ATE most when (1) there are large differences in the treatment effect between latent strata and (2) the model used to estimate the strata-level effects is well-identified. Applying the procedure to 5 catalog experiments shows a reduction of 30-60% in the variance of the overall ATE. This leads to a substantial decrease in decision errors when the estimator is used to determine whether ads should be continued or discontinued.

Deep Neural Networks are increasingly adopted in critical tasks that require a high level of safety, e.g., autonomous driving. While state-of-the-art verifiers can be employed to check whether a DNN is unsafe w.r.t. some given property (i.e., whether there is at least one unsafe input configuration), their yes/no output is not informative enough for other purposes, such as shielding, model selection, or training improvements. In this paper, we introduce the #DNN-Verification problem, which involves counting the number of input configurations of a DNN that result in a violation of a particular safety property. We analyze the complexity of this problem and propose a novel approach that returns the exact count of violations. Due to the #P-completeness of the problem, we also propose a randomized, approximate method that provides a provable probabilistic bound of the correct count while significantly reducing computational requirements. We present experimental results on a set of safety-critical benchmarks that demonstrate the effectiveness of our approximate method and evaluate the tightness of the bound.

Federated noisy label learning (FNLL) is emerging as a promising tool for privacy-preserving multi-source decentralized learning. Existing research, relying on the assumption of class-balanced global data, might be incapable to model complicated label noise, especially in medical scenarios. In this paper, we first formulate a new and more realistic federated label noise problem where global data is class-imbalanced and label noise is heterogeneous, and then propose a two-stage framework named FedNoRo for noise-robust federated learning. Specifically, in the first stage of FedNoRo, per-class loss indicators followed by Gaussian Mixture Model are deployed for noisy client identification. In the second stage, knowledge distillation and a distance-aware aggregation function are jointly adopted for noise-robust federated model updating. Experimental results on the widely-used ICH and ISIC2019 datasets demonstrate the superiority of FedNoRo against the state-of-the-art FNLL methods for addressing class imbalance and label noise heterogeneity in real-world FL scenarios.

Federated learning (FL) is a prospective distributed machine learning framework that can preserve data privacy. In particular, cross-silo FL can complete model training by making isolated data islands of different organizations collaborate with a parameter server (PS) via exchanging model parameters for multiple communication rounds. In cross-silo FL, an incentive mechanism is indispensable for motivating data owners to contribute their models to FL training. However, how to allocate the reward budget among different rounds is an essential but complicated problem largely overlooked by existing works. The challenge of this problem lies in the opaque feedback between reward budget allocation and model utility improvement of FL, making the optimal reward budget allocation complicated. To address this problem, we design an online reward budget allocation algorithm using Bayesian optimization named BARA (\underline{B}udget \underline{A}llocation for \underline{R}everse \underline{A}uction). Specifically, BARA can model the complicated relationship between reward budget allocation and final model accuracy in FL based on historical training records so that the reward budget allocated to each communication round is dynamically optimized so as to maximize the final model utility. We further incorporate the BARA algorithm into reverse auction-based incentive mechanisms to illustrate its effectiveness. Extensive experiments are conducted on real datasets to demonstrate that BARA significantly outperforms competitive baselines by improving model utility with the same amount of reward budget.

Federated learning (FL) is a new distributed machine learning framework known for its benefits on data privacy and communication efficiency. Since full client participation in many cases is infeasible due to constrained resources, partial participation FL algorithms have been investigated that proactively select/sample a subset of clients, aiming to achieve learning performance close to the full participation case. This paper studies a passive partial client participation scenario that is much less well understood, where partial participation is a result of external events, namely client dropout, rather than a decision of the FL algorithm. We cast FL with client dropout as a special case of a larger class of FL problems where clients can submit substitute (possibly inaccurate) local model updates. Based on our convergence analysis, we develop a new algorithm FL-FDMS that discovers friends of clients (i.e., clients whose data distributions are similar) on-the-fly and uses friends' local updates as substitutes for the dropout clients, thereby reducing the substitution error and improving the convergence performance. A complexity reduction mechanism is also incorporated into FL-FDMS, making it both theoretically sound and practically useful. Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

北京阿比特科技有限公司