The use and analysis of massive data are challenging due to the high storage and computational cost. Subsampling algorithms are popular to downsize the data volume and reduce the computational burden. Existing subsampling approaches focus on data with numerical covariates. Although big data with categorical covariates are frequently encountered in many disciplines, the subsampling plan has not been well established. In this paper, we propose a balanced subsampling approach for reducing data with categorical covariates. The selected subsample achieves a combinatorial balance among values of covariates and therefore enjoys three desired merits. First, a balanced subsample is nonsingular and thus allows the estimation of all parameters in ANOVA regression. Second, it provides the optimal parameter estimation in the sense of minimizing the generalized variance of the estimated parameters. Third, the model trained on a balanced subsample provides robust predictions in the sense of minimizing the worst-case prediction error. We demonstrate the usefulness of the balanced subsampling over existing data reduction methods in extensive simulation studies and a real-world application.
Graph neural networks (GNNs) have achieved great success in node classification tasks. However, existing GNNs naturally bias towards the majority classes with more labelled data and ignore those minority classes with relatively few labelled ones. The traditional techniques often resort over-sampling methods, but they may cause overfitting problem. More recently, some works propose to synthesize additional nodes for minority classes from the labelled nodes, however, there is no any guarantee if those generated nodes really stand for the corresponding minority classes. In fact, improperly synthesized nodes may result in insufficient generalization of the algorithm. To resolve the problem, in this paper we seek to automatically augment the minority classes from the massive unlabelled nodes of the graph. Specifically, we propose \textit{GraphSR}, a novel self-training strategy to augment the minority classes with significant diversity of unlabelled nodes, which is based on a Similarity-based selection module and a Reinforcement Learning(RL) selection module. The first module finds a subset of unlabelled nodes which are most similar to those labelled minority nodes, and the second one further determines the representative and reliable nodes from the subset via RL technique. Furthermore, the RL-based module can adaptively determine the sampling scale according to current training data. This strategy is general and can be easily combined with different GNNs models. Our experiments demonstrate the proposed approach outperforms the state-of-the-art baselines on various class-imbalanced datasets.
We consider a personalized pricing problem in which we have data consisting of feature information, historical pricing decisions, and binary realized demand. The goal is to perform off-policy evaluation for a new personalized pricing policy that maps features to prices. Methods based on inverse propensity weighting (including doubly robust methods) for off-policy evaluation may perform poorly when the logging policy has little exploration or is deterministic, which is common in pricing applications. Building on the balanced policy evaluation framework of Kallus (2018), we propose a new approach tailored to pricing applications. The key idea is to compute an estimate that minimizes the worst-case mean squared error or maximizes a worst-case lower bound on policy performance, where in both cases the worst-case is taken with respect to a set of possible revenue functions. We establish theoretical convergence guarantees and empirically demonstrate the advantage of our approach using a real-world pricing dataset.
We focus on the problem of generalizing a causal effect estimated on a randomized controlled trial (RCT) to a target population described by a set of covariates from observational data. Available methods such as inverse propensity sampling weighting are not designed to handle missing values, which are however common in both data sources. In addition to coupling the assumptions for causal effect identifiability and for the missing values mechanism and to defining appropriate estimation strategies, one difficulty is to consider the specific structure of the data with two sources and treatment and outcome only available in the RCT. We propose three multiple imputation strategies to handle missing values when generalizing treatment effects, each handling the multi-source structure of the problem differently (separate imputation, joint imputation with fixed effect, joint imputation ignoring source information). As an alternative to multiple imputation, we also propose a direct estimation approach that treats incomplete covariates as semi-discrete variables. The multiple imputation strategies and the latter alternative rely on different sets of assumptions concerning the impact of missing values on identifiability. We discuss these assumptions and assess the methods through an extensive simulation study. This work is motivated by the analysis of a large registry of over 20,000 major trauma patients and an RCT studying the effect of tranexamic acid administration on mortality in major trauma patients admitted to ICU. The analysis illustrates how the missing values handling can impact the conclusion about the effect generalized from the RCT to the target population.
Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to traditional MCMC, by constructing an unbiased estimate of the gradient of the log-posterior with a small, uniformly-weighted subsample of the data. While efficient to compute, the resulting gradient estimator may exhibit a high variance and impact sampler performance. The problem of variance control has been traditionally addressed by constructing a better stochastic gradient estimator, often using control variates. We propose to use a discrete, non-uniform probability distribution to preferentially subsample data points that have a greater impact on the stochastic gradient. In addition, we present a method of adaptively adjusting the subsample size at each iteration of the algorithm, so that we increase the subsample size in areas of the sample space where the gradient is harder to estimate. We demonstrate that such an approach can maintain the same level of accuracy while substantially reducing the average subsample size that is used.
We prove a convergence theorem for U-statistics of degree two, where the data dimension $d$ is allowed to scale with sample size $n$. We find that the limiting distribution of a U-statistic undergoes a phase transition from the non-degenerate Gaussian limit to the degenerate limit, regardless of its degeneracy and depending only on a moment ratio. A surprising consequence is that a non-degenerate U-statistic in high dimensions can have a non-Gaussian limit with a larger variance and asymmetric distribution. Our bounds are valid for any finite $n$ and $d$, independent of individual eigenvalues of the underlying function, and dimension-independent under a mild assumption. As an application, we apply our theory to two popular kernel-based distribution tests, MMD and KSD, whose high-dimensional performance has been challenging to study. In a simple empirical setting, our results correctly predict how the test power at a fixed threshold scales with $d$ and the bandwidth.
Learning causal relationships from empirical observations is a central task in scientific research. A common method is to employ structural causal models that postulate noisy functional relations among a set of interacting variables. To ensure unique identifiability of causal directions, researchers consider restricted subclasses of structural causal models. Post-nonlinear (PNL) causal models constitute one of the most flexible options for such restricted subclasses, containing in particular the popular additive noise models as a further subclass. However, learning PNL models is not well studied beyond the bivariate case. The existing methods learn non-linear functional relations by minimizing residual dependencies and subsequently test independence from residuals to determine causal orientations. However, these methods can be prone to overfitting and, thus, difficult to tune appropriately in practice. As an alternative, we propose a new approach for PNL causal discovery that uses rank-based methods to estimate the functional parameters. This new approach exploits natural invariances of PNL models and disentangles the estimation of the non-linear functions from the independence tests used to find causal orientations. We prove consistency of our method and validate our results in numerical experiments.
Existing active strategies for training surrogate models yield accurate structural reliability estimates by aiming at design space regions in the vicinity of a specified limit state function. In many practical engineering applications, various damage conditions, e.g. repair, failure, should be probabilistically characterized, thus demanding the estimation of multiple performance functions. In this work, we investigate the capability of active learning approaches for efficiently selecting training samples under a limited computational budget while still preserving the accuracy associated with multiple surrogated limit states. Specifically, PC-Kriging-based surrogate models are actively trained considering a variance correction derived from leave-one-out cross-validation error information, whereas the sequential learning scheme relies on U-function-derived metrics. The proposed active learning approaches are tested in a highly nonlinear structural reliability setting, whereas in a more practical application, failure and repair events are stochastically predicted in the aftermath of a ship collision against an offshore wind substructure. The results show that a balanced computational budget administration can be effectively achieved by successively targeting the specified multiple limit state functions within a unified active learning scheme.
Random Fourier Features (RFF) is among the most popular and broadly applicable approaches for scaling up kernel methods. In essence, RFF allows the user to avoid costly computations on a large kernel matrix via a fast randomized approximation. However, a pervasive difficulty in applying RFF is that the user does not know the actual error of the approximation, or how this error will propagate into downstream learning tasks. Up to now, the RFF literature has primarily dealt with these uncertainties using theoretical error bounds, but from a user's standpoint, such results are typically impractical -- either because they are highly conservative or involve unknown quantities. To tackle these general issues in a data-driven way, this paper develops a bootstrap approach to numerically estimate the errors of RFF approximations. Three key advantages of this approach are: (1) The error estimates are specific to the problem at hand, avoiding the pessimism of worst-case bounds. (2) The approach is flexible with respect to different uses of RFF, and can even estimate errors in downstream learning tasks. (3) The approach enables adaptive computation, so that the user can quickly inspect the error of a rough initial kernel approximation and then predict how much extra work is needed. Lastly, in exchange for all of these benefits, the error estimates can be obtained at a modest computational cost.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.