亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-orthogonal multiple access (NOMA) has been identified as one of the promising technologies to enhance the spectral efficiency and throughput for the 5G and beyond cellular networks. Alternatively, coordinated multi-point (CoMP) improves the cell edge users coverage. Thus, CoMP and NOMA can be used together to improve the overall coverage and throughput of the cell edge users. However, user grouping and pairing for CoMP-NOMA based cellular networks has not been suitably addressed in the existing literature. Motivated by this, we propose two user grouping and pairing schemes for a CoMP-NOMA based system. Both the schemes are compared in terms of overall throughput and coverage. Numerical results are presented for various densities of users, base stations, and CoMP thresholds. Moreover, the results are compared with the purely OMA-based benchmark system, NOMA only, and CoMP only systems. We show through simulation results that the proposed schemes offer a trade-off between throughput and coverage as compared to a purely NOMA or CoMP based system.

相關內容

兩人親(qin)密社(she)交(jiao)應(ying)用,官網:

A framework is presented for fitting inverse problem models via variational Bayes approximations. This methodology guarantees flexibility to statistical model specification for a broad range of applications, good accuracy performances and reduced model fitting times, when compared with standard Markov chain Monte Carlo methods. The message passing and factor graph fragment approach to variational Bayes we describe facilitates streamlined implementation of approximate inference algorithms and forms the basis to software development. Such approach allows for supple inclusion of numerous response distributions and penalizations into the inverse problem model. Even though our work is circumscribed to one- and two-dimensional response variables, we lay down an infrastructure where efficient algorithm updates based on nullifying weak interactions between variables can also be derived for inverse problems in higher dimensions. Image processing applications motivated by biomedical and archaeological problems are included as illustrations.

Signaling design for secure transmission in two-user multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) networks is investigated in this paper. The base station broadcasts multicast data to all users and also integrates additional services, unicast data targeted to certain users, and confidential data protected against eavesdroppers. We categorize the above MIMO-NOMA with different security requirements into several communication scenarios. The associated problem in each scenario is nonconvex. We propose a unified approach, called the power splitting scheme, for optimizing the rate equations corresponding to the scenarios. The proposed method decomposes the optimization of the secure MIMO-NOMA channel into a set of simpler problems, including multicast, point-to-point, and wiretap MIMO problems, corresponding to the three basic messages: multicast, private/unicast, and confidential messages. We then leverage existing solutions to design signaling for the above problems such that the messages are transmitted with high security and reliability. Numerical results illustrate the efficacy of the proposed covariance matrix design in secure MIMO-NOMA transmission. The proposed method also outperforms existing solutions, when applicable. In the case of no multicast messages, we also reformulate the nonconvex problem into weighted sum rate (WSR) maximization problems by applying the block successive maximization method and generalizing the zero duality gap. The two methods have their advantages and limitations. Power splitting is a general tool that can be applied to the MIMO-NOMA with any combination of the three messages (multicast, private, and confidential) whereas WSR maximization shows greater potential for secure MIMO-NOMA communication without multicasting. In such cases, WSR maximization provides a slightly better rate than the power splitting method.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. In this work, we propose a relational message passing method for knowledge graph completion. Different from existing embedding-based methods, relational message passing only considers edge features (i.e., relation types) without entity IDs in the knowledge graph, and passes relational messages among edges iteratively to aggregate neighborhood information. Specifically, two kinds of neighborhood topology are modeled for a given entity pair under the relational message passing framework: (1) Relational context, which captures the relation types of edges adjacent to the given entity pair; (2) Relational paths, which characterize the relative position between the given two entities in the knowledge graph. The two message passing modules are combined together for relation prediction. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that, our method PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. PathCon is also shown applicable to inductive settings where entities are not seen in training stage, and it is able to provide interpretable explanations for the predicted results. The code and all datasets are available at //github.com/hwwang55/PathCon.

User and item attributes are essential side-information; their interactions (i.e., their co-occurrence in the sample data) can significantly enhance prediction accuracy in various recommender systems. We identify two different types of attribute interactions, inner interactions and cross interactions: inner interactions are those between only user attributes or those between only item attributes; cross interactions are those between user attributes and item attributes. Existing models do not distinguish these two types of attribute interactions, which may not be the most effective way to exploit the information carried by the interactions. To address this drawback, we propose a neural Graph Matching based Collaborative Filtering model (GMCF), which effectively captures the two types of attribute interactions through modeling and aggregating attribute interactions in a graph matching structure for recommendation. In our model, the two essential recommendation procedures, characteristic learning and preference matching, are explicitly conducted through graph learning (based on inner interactions) and node matching (based on cross interactions), respectively. Experimental results show that our model outperforms state-of-the-art models. Further studies verify the effectiveness of GMCF in improving the accuracy of recommendation.

We present a hierarchical neural message passing architecture for learning on molecular graphs. Our model takes in two complementary graph representations: the raw molecular graph representation and its associated junction tree, where nodes represent meaningful clusters in the original graph, e.g., rings or bridged compounds. We then proceed to learn a molecule's representation by passing messages inside each graph, and exchange messages between the two representations using a coarse-to-fine and fine-to-coarse information flow. Our method is able to overcome some of the restrictions known from classical GNNs, like detecting cycles, while still being very efficient to train. We validate its performance on the ZINC dataset and datasets stemming from the MoleculeNet benchmark collection.

Question answering over knowledge graphs (KGQA) has evolved from simple single-fact questions to complex questions that require graph traversal and aggregation. We propose a novel approach for complex KGQA that uses unsupervised message passing, which propagates confidence scores obtained by parsing an input question and matching terms in the knowledge graph to a set of possible answers. First, we identify entity, relationship, and class names mentioned in a natural language question, and map these to their counterparts in the graph. Then, the confidence scores of these mappings propagate through the graph structure to locate the answer entities. Finally, these are aggregated depending on the identified question type. This approach can be efficiently implemented as a series of sparse matrix multiplications mimicking joins over small local subgraphs. Our evaluation results show that the proposed approach outperforms the state-of-the-art on the LC-QuAD benchmark. Moreover, we show that the performance of the approach depends only on the quality of the question interpretation results, i.e., given a correct relevance score distribution, our approach always produces a correct answer ranking. Our error analysis reveals correct answers missing from the benchmark dataset and inconsistencies in the DBpedia knowledge graph. Finally, we provide a comprehensive evaluation of the proposed approach accompanied with an ablation study and an error analysis, which showcase the pitfalls for each of the question answering components in more detail.

Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such a framework does not consider scene concepts to attend visual information, which leads to sentence bias in caption generation and defects the performance correspondingly. We argue that such scene concepts capture higher-level visual semantics and serve as an important cue in describing images. In this paper, we propose a novel scene-based factored attention module for image captioning. Specifically, the proposed module first embeds the scene concepts into factored weights explicitly and attends the visual information extracted from the input image. Then, an adaptive LSTM is used to generate captions for specific scene types. Experimental results on Microsoft COCO benchmark show that the proposed scene-based attention module improves model performance a lot, which outperforms the state-of-the-art approaches under various evaluation metrics.

Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements.

Tumor detection in biomedical imaging is a time-consuming process for medical professionals and is not without errors. Thus in recent decades, researchers have developed algorithmic techniques for image processing using a wide variety of mathematical methods, such as statistical modeling, variational techniques, and machine learning. In this paper, we propose a semi-automatic method for liver segmentation of 2D CT scans into three labels denoting healthy, vessel, or tumor tissue based on graph cuts. First, we create a feature vector for each pixel in a novel way that consists of the 59 intensity values in the time series data and propose a simplified perimeter cost term in the energy functional. We normalize the data and perimeter terms in the functional to expedite the graph cut without having to optimize the scaling parameter $\lambda$. In place of a training process, predetermined tissue means are computed based on sample regions identified by expert radiologists. The proposed method also has the advantage of being relatively simple to implement computationally. It was evaluated against the ground truth on a clinical CT dataset of 10 tumors and yielded segmentations with a mean Dice similarity coefficient (DSC) of .77 and mean volume overlap error (VOE) of 36.7%. The average processing time was 1.25 minutes per slice.

Crowd-powered conversational assistants have been shown to be more robust than automated systems, but do so at the cost of higher response latency and monetary costs. A promising direction is to combine the two approaches for high quality, low latency, and low cost solutions. In this paper, we introduce Evorus, a crowd-powered conversational assistant built to automate itself over time by (i) allowing new chatbots to be easily integrated to automate more scenarios, (ii) reusing prior crowd answers, and (iii) learning to automatically approve response candidates. Our 5-month-long deployment with 80 participants and 281 conversations shows that Evorus can automate itself without compromising conversation quality. Crowd-AI architectures have long been proposed as a way to reduce cost and latency for crowd-powered systems; Evorus demonstrates how automation can be introduced successfully in a deployed system. Its architecture allows future researchers to make further innovation on the underlying automated components in the context of a deployed open domain dialog system.

北京阿比特科技有限公司