Entity matching is a critical challenge in data integration and cleaning, central to tasks like fuzzy joins and deduplication. Traditional approaches have focused on overcoming fuzzy term representations through methods such as edit distance, Jaccard similarity, and more recently, embeddings and deep neural networks, including advancements from large language models (LLMs) like GPT. However, the core challenge in entity matching extends beyond term fuzziness to the ambiguity in defining what constitutes a "match," especially when integrating with external databases. This ambiguity arises due to varying levels of detail and granularity among entities, complicating exact matches. We propose a novel approach that shifts focus from purely identifying semantic similarities to understanding and defining the "relations" between entities as crucial for resolving ambiguities in matching. By predefining a set of relations relevant to the task at hand, our method allows analysts to navigate the spectrum of similarity more effectively, from exact matches to conceptually related entities.
AI intent alignment, ensuring that AI produces outcomes as intended by users, is a critical challenge in human-AI interaction. The emergence of generative AI, including LLMs, has intensified the significance of this problem, as interactions increasingly involve users specifying desired results for AI systems. In order to support better AI intent alignment, we aim to explore human strategies for intent specification in human-human communication. By studying and comparing human-human and human-LLM communication, we identify key strategies that can be applied to the design of AI systems that are more effective at understanding and aligning with user intent. This study aims to advance toward a human-centered AI system by bringing together human communication strategies for the design of AI systems.
Time-varying connectivity of triangle mesh sequences leads to substantial difficulties in their processing. Unlike editing sequences with constant connectivity, editing sequences with varying connectivity requires addressing the problem of temporal correspondence between the frames of the sequence. We present a method for time-consistent editing of triangle mesh sequences with varying connectivity using sparse temporal correspondence, which can be obtained using existing methods. Our method includes a deformation model based on the usage of the sparse temporal correspondence, which is suitable for the temporal propagation of user-specified deformations of the edited surface with respect to the shape and true topology of the surface while preserving the individual connectivity of each frame. Since there is no other method capable of comparable types of editing on time-varying meshes, we compare our method and the proposed deformation model with a baseline approach and demonstrate the benefits of our framework.
We propose a modified density estimation problem that is highly effective for detecting anomalies in tabular data. Our approach assumes that the density function is relatively stable (with lower variance) around normal samples. We have verified this hypothesis empirically using a wide range of real-world data. Then, we present a variance-stabilized density estimation problem for maximizing the likelihood of the observed samples while minimizing the variance of the density around normal samples. To obtain a reliable anomaly detector, we introduce a spectral ensemble of autoregressive models for learning the variance-stabilized distribution. We have conducted an extensive benchmark with 52 datasets, demonstrating that our method leads to state-of-the-art results while alleviating the need for data-specific hyperparameter tuning. Finally, we have used an ablation study to demonstrate the importance of each of the proposed components, followed by a stability analysis evaluating the robustness of our model.
Interventions targeting the representation space of language models (LMs) have emerged as an effective means to influence model behavior. Such methods are employed, for example, to eliminate or alter the encoding of demographic information such as gender within the model's representations and, in so doing, create a counterfactual representation. However, because the intervention operates within the representation space, understanding precisely what aspects of the text it modifies poses a challenge. In this paper, we give a method to convert representation counterfactuals into string counterfactuals. We demonstrate that this approach enables us to analyze the linguistic alterations corresponding to a given representation space intervention and to interpret the features utilized to encode a specific concept. Moreover, the resulting counterfactuals can be used to mitigate bias in classification through data augmentation.
To understand and summarize approval preferences and other binary evaluation data, it is useful to order the items on an axis which explains the data. In a political election using approval voting, this could be an ideological left-right axis such that each voter approves adjacent candidates, an analogue of single-peakedness. In a perfect axis, every approval set would be an interval, which is usually not possible, and so we need to choose an axis that gets closest to this ideal. The literature has developed algorithms for optimizing several objective functions (e.g., minimize the number of added approvals needed to get a perfect axis), but provides little help with choosing among different objectives. In this paper, we take a social choice approach and compare 5 different axis selection rules axiomatically, by studying the properties they satisfy. We establish some impossibility theorems, and characterize (within the class of scoring rules) the rule that chooses the axes that maximize the number of votes that form intervals, using the axioms of ballot monotonicity and resistance to cloning. Finally, we study the behavior of the rules on data from French election surveys, on the votes of justices of the US Supreme Court, and on synthetic data.
Multimodal emotion recognition (MER) in practical scenarios is significantly challenged by the presence of missing or incomplete data across different modalities. To overcome these challenges, researchers have aimed to simulate incomplete conditions during the training phase to enhance the system's overall robustness. Traditional methods have often involved discarding data or substituting data segments with zero vectors to approximate these incompletenesses. However, such approaches neither accurately represent real-world conditions nor adequately address the issue of noisy data availability. For instance, a blurry image cannot be simply replaced with zero vectors, and still retain information. To tackle this issue and develop a more precise MER system, we introduce a novel noise-robust MER model that effectively learns robust multimodal joint representations from noisy data. This approach includes two pivotal components: firstly, a noise scheduler that adjusts the type and level of noise in the data to emulate various realistic incomplete situations. Secondly, a Variational AutoEncoder (VAE)-based module is employed to reconstruct these robust multimodal joint representations from the noisy inputs. Notably, the introduction of the noise scheduler enables the exploration of an entirely new type of incomplete data condition, which is impossible with existing methods. Extensive experimental evaluations on the benchmark datasets IEMOCAP and CMU-MOSEI demonstrate the effectiveness of the noise scheduler and the excellent performance of our proposed model.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.