In this paper we present D.A.V.I.D.E. (Development for an Added Value Infrastructure Designed in Europe), an innovative and energy efficient High Performance Computing cluster designed by E4 Computer Engineering for PRACE (Partnership for Advanced Computing in Europe). D.A.V.I.D.E. is built using best-in-class components (IBM's POWER8-NVLink CPUs, NVIDIA TESLA P100 GPUs, Mellanox InfiniBand EDR 100 Gb/s networking) plus custom hardware and an innovative system middleware software. D.A.V.I.D.E. features (i) a dedicated power monitor interface, built around the BeagleBone Black Board that allows high frequency sampling directly from the power backplane and scalable integration with the internal node telemetry and system level power management software; (ii) a custom-built chassis, based on OpenRack form factor, and liquid cooling that allows the system to be used in modern, energy efficient, datacenter; (iii) software components designed for enabling fine grain power monitoring, power management (i.e. power capping and energy aware job scheduling) and application power profiling, based on dedicated machine learning components. Software APIs are offered to developers and users to tune the computing node performance and power consumption around on the application requirements. The first pilot system that we will deploy at the beginning of 2017, will demonstrate key HPC applications from different fields ported and optimized for this innovative platform.
Neural networks have been able to generate high-quality single-sentence speech with substantial expressiveness. However, it remains a challenge concerning paragraph-level speech synthesis due to the need for coherent acoustic features while delivering fluctuating speech styles. Meanwhile, training these models directly on over-length speech leads to a deterioration in the quality of synthesis speech. To address these problems, we propose a high-quality and expressive paragraph speech synthesis system with a multi-step variational autoencoder. Specifically, we employ multi-step latent variables to capture speech information at different grammatical levels before utilizing these features in parallel to generate speech waveform. We also propose a three-step training method to improve the decoupling ability. Our model was trained on a single-speaker French audiobook corpus released at Blizzard Challenge 2023. Experimental results underscore the significant superiority of our system over baseline models.
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good guarantees) or for theoretical purposes (e.g., to reveal that the landscape satisfies a strict saddle property). In both cases, the central question is: how do the landscapes of the two problems relate? More precisely: how do desirable points such as local minima and critical points in one problem relate to those in the other problem? A key finding in this paper is that these relations are often determined by the parametrization itself, and are almost entirely independent of the cost function. Accordingly, we introduce a general framework to study parametrizations by their effect on landscapes. The framework enables us to obtain new guarantees for an array of problems, some of which were previously treated on a case-by-case basis in the literature. Applications include: optimizing low-rank matrices and tensors through factorizations; solving semidefinite programs via the Burer-Monteiro approach; training neural networks by optimizing their weights and biases; and quotienting out symmetries.
The optimal operation of water reservoir systems is a challenging task involving multiple conflicting objectives. The main source of complexity is the presence of the water inflow, which acts as an exogenous, highly uncertain disturbance on the system. When model predictive control (MPC) is employed, the optimal water release is usually computed based on the (predicted) trajectory of the inflow. This choice may jeopardize the closed-loop performance when the actual inflow differs from its forecast. In this work, we consider - for the first time - a stochastic MPC approach for water reservoirs, in which the control is optimized based on a set of plausible future inflows directly generated from past data. Such a scenario-based MPC strategy allows the controller to be more cautious, counteracting droughty periods (e.g., the lake level going below the dry limit) while at the same time guaranteeing that the agricultural water demand is satisfied. The method's effectiveness is validated through extensive Monte Carlo tests using actual inflow data from Lake Como, Italy.
In this paper, we propose Docprompt for document question answering tasks with powerful zero-shot and few-shot performance. We proposed a novel weakly supervised data generation method, a novel multl-stage training method and a novel understanding model \& generation model ensemble method. We achieved state-of-the-art performance on 4 document question answering tasks. This method greatly improves the delivery efficiency and model performance of document question answering customer projects, reducing annotation costs and labor costs. Our demo can be found at //huggingface.co/spaces/PaddlePaddle/ERNIE-Layout.
This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.
In this paper, we consider the problems of enumerating minimal vertex covers and minimal dominating sets with capacity and/or connectivity constraints. We develop polynomial-delay enumeration algorithms for these problems on bounded-degree graphs. For the case of minimal connected vertex cover, our algorithm runs in polynomial delay even on the class of $d$-claw free graphs, which extends the result on bounded-degree graphs. To complement these algorithmic results, we show that the problems of enumerating minimal connected vertex covers and minimal capacitated vertex covers in bipartite graphs are at least as hard as enumerating minimal transversals in hypergraphs.
In this paper, to the best of our knowledge, we make the first attempt at studying the parametric semilinear elliptic eigenvalue problems with the parametric coefficient and some power-type nonlinearities. The parametric coefficient is assumed to have an affine dependence on the countably many parameters with an appropriate class of sequences of functions. In this paper, we obtain the upper bound estimation for the mixed derivatives of the ground eigenpairs that has the same form obtained recently for the linear eigenvalue problem. The three most essential ingredients for this estimation are the parametric analyticity of the ground eigenpairs, the uniform boundedness of the ground eigenpairs, and the uniform positive differences between ground eigenvalues of linear operators. All these three ingredients need new techniques and a careful investigation of the nonlinear eigenvalue problem that will be presented in this paper. As an application, considering each parameter as a uniformly distributed random variable, we estimate the expectation of the eigenpairs using a randomly shifted quasi-Monte Carlo lattice rule and show the dimension-independent error bound.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.