亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current state-of-the-art segmentation techniques for ocular images are critically dependent on large-scale annotated datasets, which are labor-intensive to gather and often raise privacy concerns. In this paper, we present a novel framework, called BiOcularGAN, capable of generating synthetic large-scale datasets of photorealistic (visible light and near-infrared) ocular images, together with corresponding segmentation labels to address these issues. At its core, the framework relies on a novel Dual-Branch StyleGAN2 (DB-StyleGAN2) model that facilitates bimodal image generation, and a Semantic Mask Generator (SMG) component that produces semantic annotations by exploiting latent features of the DB-StyleGAN2 model. We evaluate BiOcularGAN through extensive experiments across five diverse ocular datasets and analyze the effects of bimodal data generation on image quality and the produced annotations. Our experimental results show that BiOcularGAN is able to produce high-quality matching bimodal images and annotations (with minimal manual intervention) that can be used to train highly competitive (deep) segmentation models (in a privacy aware-manner) that perform well across multiple real-world datasets. The source code for the BiOcularGAN framework is publicly available at //github.com/dariant/BiOcularGAN.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 數據集 · 查準率/準確率 · Integration · 遷移學習 ·
2023 年 2 月 9 日

Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning using unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemma in multi-organ segmentation. We first review the traditional fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.

Automated optic disc (OD) and optic cup (OC) segmentation in fundus images is relevant to efficiently measure the vertical cup-to-disc ratio (vCDR), a biomarker commonly used in ophthalmology to determine the degree of glaucomatous optic neuropathy. In general this is solved using coarse-to-fine deep learning algorithms in which a first stage approximates the OD and a second one uses a crop of this area to predict OD/OC masks. While this approach is widely applied in the literature, there are no studies analyzing its real contribution to the results. In this paper we present a comprehensive analysis of different coarse-to-fine designs for OD/OC segmentation using 5 public databases, both from a standard segmentation perspective and for estimating the vCDR for glaucoma assessment. Our analysis shows that these algorithms not necessarily outperfom standard multi-class single-stage models, especially when these are learned from sufficiently large and diverse training sets. Furthermore, we noticed that the coarse stage achieves better OD segmentation results than the fine one, and that providing OD supervision to the second stage is essential to ensure accurate OC masks. Moreover, both the single-stage and two-stage models trained on a multi-dataset setting showed results in pair or even better than other state-of-the-art alternatives, while ranking first in REFUGE for OD/OC segmentation. Finally, we evaluated the models for vCDR prediction in comparison with six ophthalmologists on a subset of AIROGS images, to understand them in the context of inter-observer variability. We noticed that vCDR estimates recovered both from single-stage and coarse-to-fine models can obtain good glaucoma detection results even when they are not highly correlated with manual measurements from experts.

Recent advancements in large scale text-to-image models have opened new possibilities for guiding the creation of images through human-devised natural language. However, while prior literature has primarily focused on the generation of individual images, it is essential to consider the capability of these models to ensure coherency within a sequence of images to fulfill the demands of real-world applications such as storytelling. To address this, here we present a novel neural pipeline for generating a coherent storybook from the plain text of a story. Specifically, we leverage a combination of a pre-trained Large Language Model and a text-guided Latent Diffusion Model to generate coherent images. While previous story synthesis frameworks typically require a large-scale text-to-image model trained on expensive image-caption pairs to maintain the coherency, we employ simple textual inversion techniques along with detector-based semantic image editing which allows zero-shot generation of the coherent storybook. Experimental results show that our proposed method outperforms state-of-the-art image editing baselines.

Novel photo-realistic texture synthesis is an important task for generating novel scenes, including asset generation for 3D simulations. However, to date, these methods predominantly generate textured objects in 2D space. If we rely on 2D object generation, then we need to make a computationally expensive forward pass each time we change the camera viewpoint or lighting. Recent work that can generate textures in 3D requires 3D component segmentation that is expensive to acquire. In this work, we present a novel conditional generative architecture that we call a graph generative adversarial network (GGAN) that can generate textures in 3D by learning object component information in an unsupervised way. In this framework, we do not need an expensive forward pass whenever the camera viewpoint or lighting changes, and we do not need expensive 3D part information for training, yet the model can generalize to unseen 3D meshes and generate appropriate novel 3D textures. We compare this approach against state-of-the-art texture generation methods and demonstrate that the GGAN obtains significantly better texture generation quality (according to Frechet inception distance). We release our model source code as open source.

Language models (LMs) have demonstrated their capability in possessing commonsense knowledge of the physical world, a crucial aspect of performing tasks in everyday life. However, it remains unclear whether they have the capacity to generate grounded, executable plans for embodied tasks. This is a challenging task as LMs lack the ability to perceive the environment through vision and feedback from the physical environment. In this paper, we address this important research question and present the first investigation into the topic. Our novel problem formulation, named G-PlanET, inputs a high-level goal and a data table about objects in a specific environment, and then outputs a step-by-step actionable plan for a robotic agent to follow. To facilitate the study, we establish an evaluation protocol and design a dedicated metric, KAS, to assess the quality of the plans. Our experiments demonstrate that the use of tables for encoding the environment and an iterative decoding strategy can significantly enhance the LMs' ability in grounded planning. Our analysis also reveals interesting and non-trivial findings.

We present Reddit Health Online Talk (RedHOT), a corpus of 22,000 richly annotated social media posts from Reddit spanning 24 health conditions. Annotations include demarcations of spans corresponding to medical claims, personal experiences, and questions. We collect additional granular annotations on identified claims. Specifically, we mark snippets that describe patient Populations, Interventions, and Outcomes (PIO elements) within these. Using this corpus, we introduce the task of retrieving trustworthy evidence relevant to a given claim made on social media. We propose a new method to automatically derive (noisy) supervision for this task which we use to train a dense retrieval model; this outperforms baseline models. Manual evaluation of retrieval results performed by medical doctors indicate that while our system performance is promising, there is considerable room for improvement. Collected annotations (and scripts to assemble the dataset), are available at //github.com/sominw/redhot.

Code style is an aesthetic choice exhibited in source code that reflects programmers individual coding habits. This study is the first to investigate whether code style can be used as an indicator to identify good programmers. Data from Google Code Jam was chosen for conducting the study. A cluster analysis was performed to find whether a particular coding style could be associated with good programmers. Furthermore, supervised machine learning models were trained using stylistic features and evaluated using recall, macro-F1, AUC-ROC and balanced accuracy to predict good programmers. The results demonstrate that good programmers may be identified using supervised machine learning models, despite that no particular style groups could be attributed as a good style.

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.

北京阿比特科技有限公司