Understanding material surfaces and interfaces is vital in applications like catalysis or electronics. Ab initio simulations, combining energies from electronic structure with statistical mechanics, can, in principle, predict the structure of material surfaces as a function of thermodynamic variables. However, accurate energy simulations are prohibitive when coupled to the vast phase space that must be statistically sampled. Here, we present a bi-faceted computational loop to predict surface phase diagrams of multi-component materials that accelerates both the energy scoring and statistical sampling methods. Fast, scalable, and data-efficient machine learning interatomic potentials are trained on high-throughput density-functional theory calculations through closed-loop active learning. Markov-chain Monte Carlo sampling in the semi-grand canonical ensemble is enabled by using virtual surface sites. The predicted surfaces for GaN(0001) and SrTiO3(001) are in agreement with past work and suggest that the proposed strategy can model complex material surfaces and discover previously unreported surface terminations.
Ultrasound (US) imaging is a popular tool in clinical diagnosis, offering safety, repeatability, and real-time capabilities. Freehand 3D US is a technique that provides a deeper understanding of scanned regions without increasing complexity. However, estimating elevation displacement and accumulation error remains challenging, making it difficult to infer the relative position using images alone. The addition of external lightweight sensors has been proposed to enhance reconstruction performance without adding complexity, which has been shown to be beneficial. We propose a novel online self-consistency network (OSCNet) using multiple inertial measurement units (IMUs) to improve reconstruction performance. OSCNet utilizes a modal-level self-supervised strategy to fuse multiple IMU information and reduce differences between reconstruction results obtained from each IMU data. Additionally, a sequence-level self-consistency strategy is proposed to improve the hierarchical consistency of prediction results among the scanning sequence and its sub-sequences. Experiments on large-scale arm and carotid datasets with multiple scanning tactics demonstrate that our OSCNet outperforms previous methods, achieving state-of-the-art reconstruction performance.
Evaluating failure probability for complex engineering systems is a computationally intensive task. While the Monte Carlo method is easy to implement, it converges slowly and, hence, requires numerous repeated simulations of a complex system to generate sufficient samples. To improve the efficiency, methods based on surrogate models are proposed to approximate the limit state function. In this work, we reframe the approximation of the limit state function as an operator learning problem and utilize the DeepONet framework with a hybrid approach to estimate the failure probability. The numerical results show that our proposed method outperforms the prior neural hybrid method.
We consider the problem of testing for the martingale difference hypothesis for univariate strictly stationary time series by implementing a novel test for conditional mean independence based on the concept of martingale difference divergence. The martingale difference divergence function allows us to measure the degree to which a certain variable is conditionally mean dependent upon its past values: in particular, it does so by computing the regularized norm of the covariance between the current value of the variable and the characteristic function of its past values. In this paper, we make use of such a concept, along with the theoretical framework of generalized spectral density, to construct a Ljung-Box type test for the martingale difference hypothesis. In addition to the results obtained with the implementation of the test statistic, we proceed to show some asymptotics for martingale difference divergence in the time series framework.
The volume penalization (VP) or the Brinkman penalization (BP) method is a diffuse interface method for simulating multiphase fluid-structure interaction (FSI) problems in ocean engineering and/or phase change problems in thermal sciences. The method relies on a penalty factor (which is inversely related to body's permeability $\kappa$) that must be large to enforce rigid body velocity in the solid domain. When the penalty factor is large, the discrete system of equations becomes stiff and difficult to solve numerically. In this paper, we propose a projection method-based preconditioning strategy for solving volume penalized (VP) incompressible and low-Mach Navier-Stokes equations. The projection preconditioner enables the monolithic solution of the coupled velocity-pressure system in both single phase and multiphase flow settings. In this approach, the penalty force is treated implicitly, which is allowed to take arbitrary large values without affecting the solver's convergence rate or causing numerical stiffness/instability. It is made possible by including the penalty term in the pressure Poisson equation. Solver scalability under grid refinement is demonstrated. A manufactured solution in a single phase setting is used to determine the spatial accuracy of the penalized solution. Second-order pointwise accuracy is achieved for both velocity and pressure solutions. Two multiphase fluid-structure interaction (FSI) problems from the ocean engineering literature are also simulated to evaluate the solver's robustness and performance. The proposed solver allows us to investigate the effect of $\kappa$ on the motion of the contact line over the surface of the immersed body. It also allows us to investigate the dynamics of the free surface of a solidifying metal
Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations. The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods. In particular, there exists a demand for a fast simulation of the neutron Zero Degree Calorimeter, where existing Monte Carlo-based methods impose a significant computational burden. We propose an alternative approach to the problem that leverages machine learning. Our solution utilises neural network classifiers and generative models to directly simulate the response of the calorimeter. In particular, we examine the performance of variational autoencoders and generative adversarial networks, expanding the GAN architecture by an additional regularisation network and a simple, yet effective postprocessing step. Our approach increases the simulation speed by 2 orders of magnitude while maintaining the high fidelity of the simulation.
We present an artificial intelligence (AI) method for automatically computing the melting point based on coexistence simulations in the NPT ensemble. Given the interatomic interaction model, the method makes decisions regarding the number of atoms and temperature at which to conduct simulations, and based on the collected data predicts the melting point along with the uncertainty, which can be systematically improved with more data. We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the AI method's accuracy and enables optimal decision-making to effectively reduce predictive uncertainty. To validate our approach, we compare our results with approximately 20 melting point calculations from the literature. Remarkably, we observe significant deviations in about one-third of the cases, underscoring the need for accurate and reliable AI-based algorithms for materials property calculations.
Predicting how a drug-like molecule binds to a specific protein target is a core problem in drug discovery. An extremely fast computational binding method would enable key applications such as fast virtual screening or drug engineering. Existing methods are computationally expensive as they rely on heavy candidate sampling coupled with scoring, ranking, and fine-tuning steps. We challenge this paradigm with EquiBind, an SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand's bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. Further, we show extra improvements when coupling it with existing fine-tuning techniques at the cost of increased running time. Finally, we propose a novel and fast fine-tuning model that adjusts torsion angles of a ligand's rotatable bonds based on closed-form global minima of the von Mises angular distance to a given input atomic point cloud, avoiding previous expensive differential evolution strategies for energy minimization.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.