High-level synthesis (HLS) notably speeds up the hardware design process by avoiding RTL programming. However, the turnaround time of HLS increases significantly when post-route quality of results (QoR) are considered during optimization. To tackle this issue, we propose a hierarchical post-route QoR prediction approach for FPGA HLS, which features: (1) a modeling flow that directly estimates latency and post-route resource usage from C/C++ programs; (2) a graph construction method that effectively represents the control and data flow graph of source code and effects of HLS pragmas; and (3) a hierarchical GNN training and prediction method capable of capturing the impact of loop hierarchies. Experimental results show that our method presents a prediction error of less than 10% for different types of QoR metrics, which gains tremendous improvement compared with the state-of-the-art GNN methods. By adopting our proposed methodology, the runtime for design space exploration in HLS is shortened to tens of minutes and the achieved ADRS is reduced to 6.91% on average.
Generative models can serve as surrogates for some real data sources by creating synthetic training datasets, but in doing so they may transfer biases to downstream tasks. We focus on protecting quality and diversity when generating synthetic training datasets. We propose quality-diversity generative sampling (QDGS), a framework for sampling data uniformly across a user-defined measure space, despite the data coming from a biased generator. QDGS is a model-agnostic framework that uses prompt guidance to optimize a quality objective across measures of diversity for synthetically generated data, without fine-tuning the generative model. Using balanced synthetic datasets generated by QDGS, we first debias classifiers trained on color-biased shape datasets as a proof-of-concept. By applying QDGS to facial data synthesis, we prompt for desired semantic concepts, such as skin tone and age, to create an intersectional dataset with a combined blend of visual features. Leveraging this balanced data for training classifiers improves fairness while maintaining accuracy on facial recognition benchmarks. Code available at: //github.com/Cylumn/qd-generative-sampling.
Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a cutting-edge concept for the sixth-generation (6G) wireless networks. In this letter, we propose a novel system that incorporates STAR-RIS with simultaneous wireless information and power transfer (SWIPT) using rate splitting multiple access (RSMA). The proposed system facilitates communication from a multi-antenna base station (BS) to single-antenna users in a downlink transmission. The BS concurrently sends energy and information signals to multiple energy harvesting receivers (EHRs) and information data receivers (IDRs) with the support of a deployed STAR-RIS. Furthermore, an optimization is introduced to strike a balance between users' sum rate and the total harvested energy. To achieve this, an optimization problem is formulated to optimize the energy/information beamforming vectors at the BS, the phase shifts at the STAR-RIS, and the common message rate. Subsequently, we employ a meta deep deterministic policy gradient (Meta-DDPG) approach to solve the complex problem. Simulation results validate that the proposed algorithm significantly enhances both data rate and harvested energy in comparison to conventional DDPG.
This paper considers the problem of the private release of sample means of speed values from traffic datasets. Our key contribution is the development of user-level differentially private algorithms that incorporate carefully chosen parameter values to ensure low estimation errors on real-world datasets, while ensuring privacy. We test our algorithms on ITMS (Intelligent Traffic Management System) data from an Indian city, where the speeds of different buses are drawn in a potentially non-i.i.d. manner from an unknown distribution, and where the number of speed samples contributed by different buses is potentially different. We then apply our algorithms to large synthetic datasets, generated based on the ITMS data. Here, we provide theoretical justification for the observed performance trends, and also provide recommendations for the choices of algorithm subroutines that result in low estimation errors. Finally, we characterize the best performance of pseudo-user creation-based algorithms on worst-case datasets via a minimax approach; this then gives rise to a novel procedure for the creation of pseudo-users, which optimizes the worst-case total estimation error.
Instance segmentation datasets play a crucial role in training accurate and robust computer vision models. However, obtaining accurate mask annotations to produce high-quality segmentation datasets is a costly and labor-intensive process. In this work, we show how this issue can be mitigated by starting with small annotated instance segmentation datasets and augmenting them to effectively obtain a sizeable annotated dataset. We achieve that by creating variations of the available annotated object instances in a way that preserves the provided mask annotations, thereby resulting in new image-mask pairs to be added to the set of annotated images. Specifically, we generate new images using a diffusion-based inpainting model to fill out the masked area with a desired object class by guiding the diffusion through the object outline. We show that the object outline provides a simple, but also reliable and convenient training-free guidance signal for the underlying inpainting model that is often sufficient to fill out the mask with an object of the correct class without further text guidance and preserve the correspondence between generated images and the mask annotations with high precision. Our experimental results reveal that our method successfully generates realistic variations of object instances, preserving their shape characteristics while introducing diversity within the augmented area. We also show that the proposed method can naturally be combined with text guidance and other image augmentation techniques.
Multimodal learning seeks to utilize data from multiple sources to improve the overall performance of downstream tasks. It is desirable for redundancies in the data to make multimodal systems robust to missing or corrupted observations in some correlated modalities. However, we observe that the performance of several existing multimodal networks significantly deteriorates if one or multiple modalities are absent at test time. To enable robustness to missing modalities, we propose a simple and parameter-efficient adaptation procedure for pretrained multimodal networks. In particular, we exploit modulation of intermediate features to compensate for the missing modalities. We demonstrate that such adaptation can partially bridge performance drop due to missing modalities and outperform independent, dedicated networks trained for the available modality combinations in some cases. The proposed adaptation requires extremely small number of parameters (e.g., fewer than 0.7% of the total parameters) and applicable to a wide range of modality combinations and tasks. We conduct a series of experiments to highlight the missing modality robustness of our proposed method on 5 different datasets for multimodal semantic segmentation, multimodal material segmentation, and multimodal sentiment analysis tasks. Our proposed method demonstrates versatility across various tasks and datasets, and outperforms existing methods for robust multimodal learning with missing modalities.
Efforts to reduce maternal mortality rate, a key UN Sustainable Development target (SDG Target 3.1), rely largely on preventative care programs to spread critical health information to high-risk populations. These programs face two important challenges: efficiently allocating limited health resources to large beneficiary populations, and adapting to evolving policy priorities. While prior works in restless multi-armed bandit (RMAB) demonstrated success in public health allocation tasks, they lack flexibility to adapt to evolving policy priorities. Concurrently, Large Language Models (LLMs) have emerged as adept, automated planners in various domains, including robotic control and navigation. In this paper, we propose DLM: a Decision Language Model for RMABs. To enable dynamic fine-tuning of RMAB policies for challenging public health settings using human-language commands, we propose using LLMs as automated planners to (1) interpret human policy preference prompts, (2) propose code reward functions for a multi-agent RL environment for RMABs, and (3) iterate on the generated reward using feedback from RMAB simulations to effectively adapt policy outcomes. In collaboration with ARMMAN, an India-based public health organization promoting preventative care for pregnant mothers, we conduct a simulation study, showing DLM can dynamically shape policy outcomes using only human language commands as input.
Reinforcement Learning (RL), one of the core paradigms in machine learning, learns to make decisions based on real-world experiences. This approach has significantly advanced AI applications across various domains, notably in smart grid optimization and smart home automation. However, the proliferation of RL in these critical sectors has also exposed them to sophisticated adversarial attacks that target the underlying neural network policies, compromising system integrity. Given the pivotal role of RL in enhancing the efficiency and sustainability of smart grids and the personalized convenience in smart homes, ensuring the security of these systems is paramount. This paper aims to bolster the resilience of RL frameworks within these specific contexts, addressing the unique challenges posed by the intricate and potentially adversarial environments of smart grids and smart homes. We provide a thorough review of the latest adversarial RL threats and outline effective defense strategies tailored to safeguard these applications. Our comparative analysis sheds light on the nuances of adversarial tactics against RL-driven smart systems and evaluates the defense mechanisms, focusing on their innovative contributions, limitations, and the compromises they entail. By concentrating on the smart grid and smart home scenarios, this survey equips ML developers and researchers with the insights needed to secure RL applications against emerging threats, ensuring their reliability and safety in our increasingly connected world.
AI-powered programming assistants are increasingly gaining popularity, with GitHub Copilot alone used by over a million developers worldwide. These tools are far from perfect, however, producing code suggestions that may be incorrect in subtle ways. As a result, developers face a new challenge: validating AI's suggestions. This paper explores whether Live Programming (LP), a continuous display of a program's runtime values, can help address this challenge. To answer this question, we built a Python editor that combines an AI-powered programming assistant with an existing LP environment. Using this environment in a between-subjects study (N=17), we found that by lowering the cost of validation by execution, LP can mitigate over- and under-reliance on AI-generated programs and reduce the cognitive load of validation for certain types of tasks.
We present a multi-tenant multi-wavelength upstream transmission scheme for virtualised PONs, enabling compliance with latency-oriented Service Level Agreements (SLAs). Our analysis highlights an important trade-off between single-channel vs. multi-channel PONs, depending on ONUs tuning time.
Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.