亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present noise-domain non-orthogonal multiple access (ND-NOMA), an innovative communication scheme that utilizes the modulation of artificial noise mean and variance to convey information. Distinct from traditional methods such as power-domain non-orthogonal multiple access (PD-NOMA) that heavily relies on successive interference cancellation (SIC), ND-NOMA utilizes the noise domain, considerably reducing power consumption and system complexity. Inspired by noise modulation, ND-NOMA enhances energy efficiency and provides lower bit error probability (BEP), making it highly suitable for next-generation Internet-of-things (IoT) networks. Our theoretical analyses and computer simulations reveal that ND-NOMA can achieve exceptionally low bit error rates in both uplink and downlink scenarios, in the presence of Rician fading channels. The proposed multi-user system is supported by a minimum distance detector for mean detection and a threshold-based detector for variance detection, ensuring robust communication in low-power environments. By leveraging the inherent properties of noise, ND-NOMA offers a promising platform for long-term deployments of low-cost and low-complexity devices.

相關內容

In this paper, we address task-oriented (or goal-oriented) communications where an encoder at the transmitter learns compressed latent representations of data, which are then transmitted over a wireless channel. At the receiver, a decoder performs a machine learning task, specifically for classifying the received signals. The deep neural networks corresponding to the encoder-decoder pair are jointly trained, taking both channel and data characteristics into account. Our objective is to achieve high accuracy in completing the underlying task while minimizing the number of channel uses determined by the encoder's output size. To this end, we propose a multi-round, multi-task learning (MRMTL) approach for the dynamic update of channel uses in multi-round transmissions. The transmitter incrementally sends an increasing number of encoded samples over the channel based on the feedback from the receiver, and the receiver utilizes the signals from a previous round to enhance the task performance, rather than only considering the latest transmission. This approach employs multi-task learning to jointly optimize accuracy across varying number of channel uses, treating each configuration as a distinct task. By evaluating the confidence of the receiver in task decisions, MRMTL decides on whether to allocate additional channel uses in multiple rounds. We characterize both the accuracy and the delay (total number of channel uses) of MRMTL, demonstrating that it achieves the accuracy close to that of conventional methods requiring large numbers of channel uses, but with reduced delay by incorporating signals from a prior round. We consider the CIFAR-10 dataset, convolutional neural network architectures, and AWGN and Rayleigh channel models for performance evaluation. We show that MRMTL significantly improves the efficiency of task-oriented communications, balancing accuracy and latency effectively.

In this paper, we explore the integration of Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) to enhance automated design and software development in the automotive industry. We present two case studies: a standardization compliance chatbot and a design copilot, both utilizing RAG to provide accurate, context-aware responses. We evaluate four LLMs-GPT-4o, LLAMA3, Mistral, and Mixtral- comparing their answering accuracy and execution time. Our results demonstrate that while GPT-4 offers superior performance, LLAMA3 and Mistral also show promising capabilities for local deployment, addressing data privacy concerns in automotive applications. This study highlights the potential of RAG-augmented LLMs in improving design workflows and compliance in automotive engineering.

This paper introduces an off-the-grid estimator for integrated sensing and communication (ISAC) systems, utilizing lifted atomic norm minimization (LANM). The key challenge in this scenario is that neither the transmit signals nor the radar-and-communication channels are known. We prove that LANM can simultaneously achieve localization of radar targets and decoding of communication symbols, when the number of observations is proportional to the degrees of freedom in the ISAC systems. Despite the inherent ill-posed nature of the problem, we employ the lifting technique to initially encode the transmit signals. Then, we leverage the atomic norm to promote the structured low-rankness for the ISAC channel. We utilize a dual technique to transform the LANM into an infinite-dimensional search over the signal domain. Subsequently, we use semidefinite relaxation (SDR) to implement the dual problem. We extend our approach to practical scenarios where received signals are contaminated by additive white Gaussian noise (AWGN) and jamming signals. Furthermore, we derive the computational complexity of the proposed estimator and demonstrate that it is equivalent to the conventional pilot-aided ANM for estimating the channel parameters. Our simulation experiments demonstrate the ability of the proposed LANM approach to estimate both communication data and target parameters with a performance comparable to traditional radar-only super-resolution techniques.

In this paper, we investigate an active simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted integrated sensing and communications (ISAC) system, where the dual-function base station (DFBS) operates in full-duplex (FD) mode to provide communication services and performs targets sensing simultaneously. Meanwhile, we consider multiple targets and multiple users scenario as well as the self-interference at the FD DFBS. Through jointly optimizing the DFBS and active STAR-RIS beamforming under different work modes, our purpose is to achieve the maximum communication sum-rate, while satisfying the minimum radar signal-to-interference-plus-noise ratio (SINR) constraint, the active STAR-RIS hardware constraints and the total power constraint of DFBS and active STAR-RIS. To tackle the complex non-convex optimization problem formulated, an efficient alternating optimization algorithm is proposed. Specifically, the fractional programming method is first leveraged to turn the original problem into a more tractable one, and subsequently the transformed problem is decomposed into several sub-problems. Next, we develop a derivation method to obtain the closed-form expression of the radar receiving beamforming, and then the DFBS transmit beamforming is optimized under the radar SINR requirement and total power constraints. After that, the active STAR-RIS reflection and transmission beamforming are optimized by majorization minimization, complex circle manifold and convex optimization techniques. Finally, the proposed schemes are conducted through numerical simulations to show their benefits and efficiency.

The growth of recommender systems (RecSys) is driven by digitization and the need for personalized content in areas such as e-commerce and video streaming. The content in these systems often changes rapidly and therefore they constantly face the ongoing cold-start problem, where new items lack interaction data and are hard to value. Existing solutions for the cold-start problem, such as content-based recommenders and hybrid methods, leverage item metadata to determine item similarities. The main challenge with these methods is their reliance on structured and informative metadata to capture detailed item similarities, which may not always be available. This paper introduces a novel approach for cold-start item recommendation that utilizes the language model (LM) to estimate item similarities, which are further integrated as a Bayesian prior with classic recommender systems. This approach is generic and able to boost the performance of various recommenders. Specifically, our experiments integrate it with both sequential and collaborative filtering-based recommender and evaluate it on two real-world datasets, demonstrating the enhanced performance of the proposed approach.

We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at //github.com/yue-zhongqi/gcm-cf.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司