In this paper, we investigate computational power of threshold circuits and other theoretical models of neural networks in terms of the following four complexity measures: size (the number of gates), depth, weight and energy. Here the energy complexity of a circuit measures sparsity of their computation, and is defined as the maximum number of gates outputting non-zero values taken over all the input assignments. As our main result, we prove that any threshold circuit $C$ of size $s$, depth $d$, energy $e$ and weight $w$ satisfies $\log (rk(M_C)) \le ed (\log s + \log w + \log n)$, where $rk(M_C)$ is the rank of the communication matrix $M_C$ of a $2n$-variable Boolean function that $C$ computes. Thus, such a threshold circuit $C$ is able to compute only a Boolean function of which communication matrix has rank bounded by a product of logarithmic factors of $s,w$ and linear factors of $d,e$. This implies an exponential lower bound on the size of even sublinear-depth threshold circuit if energy and weight are sufficiently small. For other models of neural networks such as a discretized ReLE circuits and decretized sigmoid circuits, we prove that a similar inequality also holds for a discretized circuit $C$: $rk(M_C) = O(ed(\log s + \log w + \log n)^3)$.
We present ConceptEvo, a unified interpretation framework for deep neural networks (DNNs) that reveals the inception and evolution of learned concepts during training. Our work addresses a critical gap in DNN interpretation research, as existing methods primarily focus on post-training interpretation. ConceptEvo introduces two novel technical contributions: (1) an algorithm that generates a unified semantic space, enabling side-by-side comparison of different models during training, and (2) an algorithm that discovers and quantifies important concept evolutions for class predictions. Through a large-scale human evaluation and quantitative experiments, we demonstrate that ConceptEvo successfully identifies concept evolutions across different models, which are not only comprehensible to humans but also crucial for class predictions. ConceptEvo is applicable to both modern DNN architectures, such as ConvNeXt, and classic DNNs, such as VGGs and InceptionV3.
In this paper, we consider a remote inference system, where a neural network is used to infer a time-varying target (e.g., robot movement), based on features (e.g., video clips) that are progressively received from a sensing node (e.g., a camera). Each feature is a temporal sequence of sensory data. The learning performance of the system is determined by (i) the timeliness and (ii) the temporal sequence length of the features, where we use Age of Information (AoI) as a metric for timeliness. While a longer feature can typically provide better learning performance, it often requires more channel resources for sending the feature. To minimize the time-averaged inference error, we study a learning and communication co-design problem that jointly optimizes feature length selection and transmission scheduling. When there is a single sensor-predictor pair and a single channel, we develop low-complexity optimal co-designs for both the cases of time-invariant and time-variant feature length. When there are multiple sensor-predictor pairs and multiple channels, the co-design problem becomes a restless multi-arm multi-action bandit problem that is PSPACE-hard. For this setting, we design a low-complexity algorithm to solve the problem. Trace-driven evaluations suggest that the proposed co-designs can significantly reduce the time-averaged inference error of remote inference systems.
In this paper, we propose a feature affinity (FA) assisted knowledge distillation (KD) method to improve quantization-aware training of deep neural networks (DNN). The FA loss on intermediate feature maps of DNNs plays the role of teaching middle steps of a solution to a student instead of only giving final answers in the conventional KD where the loss acts on the network logits at the output level. Combining logit loss and FA loss, we found that the quantized student network receives stronger supervision than from the labeled ground-truth data. The resulting FAQD is capable of compressing model on label-free data, which brings immediate practical benefits as pre-trained teacher models are readily available and unlabeled data are abundant. In contrast, data labeling is often laborious and expensive. Finally, we propose a fast feature affinity (FFA) loss that accurately approximates FA loss with a lower order of computational complexity, which helps speed up training for high resolution image input.
In this paper, we reflect on the educational challenges and research opportunities in running data visualization design activities in the context of large courses. With the increasing number and sizes of data visualization course, we need to better understand approaches to scaling our teaching efforts. We draw on experiences organizing and facilitating activities primarily based on one instance of a master's course given to about 130 students. We provide a detailed account of the course with particular focus on the purpose, structure, and outcome of six two-hour design activities. Based on this, we reflect on three aspects of the course: First, how the course scale led us to thoroughly plan, evaluate, and revise communication between students, teaching assistants, and lecturers. Second, how we designed learning scaffolds through the design activities, and the reflections we received from students on this matter. Finally, we reflect on the diversity of the students that followed the course, the visualization exercises we used, the projects they worked on, and when to key in on simple boring problems and data sets. Thus, our paper contributes with discussions about balancing topical diversity, scaling courses to many students, and problem-based learning.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.