Several Deep Learning (DL) methods have recently been proposed for an automated identification of kidney stones during an ureteroscopy to enable rapid therapeutic decisions. Even if these DL approaches led to promising results, they are mainly appropriate for kidney stone types for which numerous labelled data are available. However, only few labelled images are available for some rare kidney stone types. This contribution exploits Deep Metric Learning (DML) methods i) to handle such classes with few samples, ii) to generalize well to out of distribution samples, and iii) to cope better with new classes which are added to the database. The proposed Guided Deep Metric Learning approach is based on a novel architecture which was designed to learn data representations in an improved way. The solution was inspired by Few-Shot Learning (FSL) and makes use of a teacher-student approach. The teacher model (GEMINI) generates a reduced hypothesis space based on prior knowledge from the labeled data, and is used it as a guide to a student model (i.e., ResNet50) through a Knowledge Distillation scheme. Extensive tests were first performed on two datasets separately used for the recognition, namely a set of images acquired for the surfaces of the kidney stone fragments, and a set of images of the fragment sections. The proposed DML-approach improved the identification accuracy by 10% and 12% in comparison to DL-methods and other DML-approaches, respectively. Moreover, model embeddings from the two dataset types were merged in an organized way through a multi-view scheme to simultaneously exploit the information of surface and section fragments. Test with the resulting mixed model improves the identification accuracy by at least 3% and up to 30% with respect to DL-models and shallow machine learning methods, respectively.
Accurate delineation of key waveforms in an ECG is a critical initial step in extracting relevant features to support the diagnosis and treatment of heart conditions. Although deep learning based methods using a segmentation model to locate the P, QRS, and T waves have shown promising results, their ability to handle signals exhibiting arrhythmia remains unclear. This study builds on existing research by introducing a U-Net-like segmentation model for ECG delineation, with a particular focus on diverse arrhythmias. For this purpose, we curate an internal dataset containing waveform boundary annotations for various arrhythmia types to train and validate our model. Our key contributions include identifying segmentation model failures in different arrhythmia types, developing a robust model using a diverse training set, achieving comparable performance on benchmark datasets, and introducing a classification guided strategy to reduce false P wave predictions for specific arrhythmias. This study advances deep learning based ECG delineation in the context of arrhythmias and highlights its challenges.
The LATIN method has been developed and successfully applied to a variety of deterministic problems, but few work has been developed for nonlinear stochastic problems. This paper presents a stochastic LATIN method to solve stochastic and/or parameterized elastoplastic problems. To this end, the stochastic solution is decoupled into spatial, temporal and stochastic spaces, and approximated by the sum of a set of products of triplets of spatial functions, temporal functions and random variables. Each triplet is then calculated in a greedy way using a stochastic LATIN iteration. The high efficiency of the proposed method relies on two aspects: The nonlinearity is efficiently handled by inheriting advantages of the classical LATIN method, and the randomness and/or parameters are effectively treated by a sample-based approximation of stochastic spaces. Further, the proposed method is not sensitive to the stochastic and/or parametric dimensions of inputs due to the sample description of stochastic spaces. It can thus be applied to high-dimensional stochastic and parameterized problems. Four numerical examples demonstrate the promising performance of the proposed stochastic LATIN method.
Previous researchers conducting Just-In-Time (JIT) defect prediction tasks have primarily focused on the performance of individual pre-trained models, without exploring the relationship between different pre-trained models as backbones. In this study, we build six models: RoBERTaJIT, CodeBERTJIT, BARTJIT, PLBARTJIT, GPT2JIT, and CodeGPTJIT, each with a distinct pre-trained model as its backbone. We systematically explore the differences and connections between these models. Specifically, we investigate the performance of the models when using Commit code and Commit message as inputs, as well as the relationship between training efficiency and model distribution among these six models. Additionally, we conduct an ablation experiment to explore the sensitivity of each model to inputs. Furthermore, we investigate how the models perform in zero-shot and few-shot scenarios. Our findings indicate that each model based on different backbones shows improvements, and when the backbone's pre-training model is similar, the training resources that need to be consumed are much more closer. We also observe that Commit code plays a significant role in defect detection, and different pre-trained models demonstrate better defect detection ability with a balanced dataset under few-shot scenarios. These results provide new insights for optimizing JIT defect prediction tasks using pre-trained models and highlight the factors that require more attention when constructing such models. Additionally, CodeGPTJIT and GPT2JIT achieved better performance than DeepJIT and CC2Vec on the two datasets respectively under 2000 training samples. These findings emphasize the effectiveness of transformer-based pre-trained models in JIT defect prediction tasks, especially in scenarios with limited training data.
Music Structure Analysis (MSA) is the task aiming at identifying musical segments that compose a music track and possibly label them based on their similarity. In this paper we propose a supervised approach for the task of music boundary detection. In our approach we simultaneously learn features and convolution kernels. For this we jointly optimize -- a loss based on the Self-Similarity-Matrix (SSM) obtained with the learned features, denoted by SSM-loss, and -- a loss based on the novelty score obtained applying the learned kernels to the estimated SSM, denoted by novelty-loss. We also demonstrate that relative feature learning, through self-attention, is beneficial for the task of MSA. Finally, we compare the performances of our approach to previously proposed approaches on the standard RWC-Pop, and various subsets of SALAMI.
Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.
We propose a novel algorithm for solving the composite Federated Learning (FL) problem. This algorithm manages non-smooth regularization by strategically decoupling the proximal operator and communication, and addresses client drift without any assumptions about data similarity. Moreover, each worker uses local updates to reduce the communication frequency with the server and transmits only a $d$-dimensional vector per communication round. We prove that our algorithm converges linearly to a neighborhood of the optimal solution and demonstrate the superiority of our algorithm over state-of-the-art methods in numerical experiments.
The Multilevel Monte Carlo (MLMC) approach usually works well when estimating the expected value of a quantity which is a Lipschitz function of intermediate quantities, but if it is a discontinuous function it can lead to a much slower decay in the variance of the MLMC correction. This article reviews the literature on techniques which can be used to overcome this challenge in a variety of different contexts, and discusses recent developments using either a branching diffusion or adaptive sampling.
Timely response of Network Intrusion Detection Systems (NIDS) is constrained by the flow generation process which requires accumulation of network packets. This paper introduces Multivariate Time Series (MTS) early detection into NIDS to identify malicious flows prior to their arrival at target systems. With this in mind, we first propose a novel feature extractor, Time Series Network Flow Meter (TS-NFM), that represents network flow as MTS with explainable features, and a new benchmark dataset is created using TS-NFM and the meta-data of CICIDS2017, called SCVIC-TS-2022. Additionally, a new deep learning-based early detection model called Multi-Domain Transformer (MDT) is proposed, which incorporates the frequency domain into Transformer. This work further proposes a Multi-Domain Multi-Head Attention (MD-MHA) mechanism to improve the ability of MDT to extract better features. Based on the experimental results, the proposed methodology improves the earliness of the conventional NIDS (i.e., percentage of packets that are used for classification) by 5x10^4 times and duration-based earliness (i.e., percentage of duration of the classified packets of a flow) by a factor of 60, resulting in a 84.1% macro F1 score (31% higher than Transformer) on SCVIC-TS-2022. Additionally, the proposed MDT outperforms the state-of-the-art early detection methods by 5% and 6% on ECG and Wafer datasets, respectively.
Deep neural networks have shown remarkable performance when trained on independent and identically distributed data from a fixed set of classes. However, in real-world scenarios, it can be desirable to train models on a continuous stream of data where multiple classification tasks are presented sequentially. This scenario, known as Continual Learning (CL) poses challenges to standard learning algorithms which struggle to maintain knowledge of old tasks while learning new ones. This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately. However, none considers the increasing difficulty of the classification task, which inherently results in performance loss for any model. In that sense, we analyze some limitations of current metrics and identify the presence of setup-induced forgetting. Therefore, we propose new metrics that account for the task's increasing difficulty. Through experiments on benchmark datasets, we demonstrate that our proposed metrics can provide new insights into the stability-plasticity trade-off achieved by models in the continual learning environment.
Graph Neural Networks (GNNs) are becoming increasingly popular due to their superior performance in critical graph-related tasks. While quantization is widely used to accelerate GNN computation, quantized training faces unprecedented challenges. Current quantized GNN training systems often have longer training times than their full-precision counterparts for two reasons: (i) addressing the accuracy challenge leads to excessive overhead, and (ii) the optimization potential exposed by quantization is not adequately leveraged. This paper introduces Tango which re-thinks quantization challenges and opportunities for graph neural network training on GPUs with three contributions: Firstly, we introduce efficient rules to maintain accuracy during quantized GNN training. Secondly, we design and implement quantization-aware primitives and inter-primitive optimizations that can speed up GNN training. Finally, we integrate Tango with the popular Deep Graph Library (DGL) system and demonstrate its superior performance over state-of-the-art approaches on various GNN models and datasets.