亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Natural language processing (NLP) tools have the potential to boost civic participation and enhance democratic processes because they can significantly increase governments' capacity to gather and analyze citizen opinions. However, their adoption in government remains limited, and harnessing their benefits while preventing unintended consequences remains a challenge. While prior work has focused on improving NLP performance, this work examines how different internal government stakeholders influence NLP tools' thoughtful adoption. We interviewed seven politicians (politically appointed officials as heads of government institutions) and thirteen public servants (career government employees who design and administrate policy interventions), inquiring how they choose whether and how to use NLP tools to support civic participation processes. The interviews suggest that policymakers across both groups focused on their needs for career advancement and the need to showcase the legitimacy and fairness of their work when considering NLP tool adoption and use. Because these needs vary between politicians and public servants, their preferred NLP features and tool designs also differ. Interestingly, despite their differing needs and opinions, neither group clearly identifies who should advocate for NLP adoption to enhance civic participation or address the unintended consequences of a poorly considered adoption. This lack of clarity in responsibility might have caused the governments' low adoption of NLP tools. We discuss how these findings reveal new insights for future HCI research. They inform the design of NLP tools for increasing civic participation efficiency and capacity, the design of other tools and methods that ensure thoughtful adoption of AI tools in government, and the design of NLP tools for collaborative use among users with different incentives and needs.

相關內容

NLP:自然語言處理

Large language models (LLMs) have shown significant multilingual capabilities. However, the mechanisms underlying the development of these capabilities during pre-training are not well understood. In this paper, we use code LLMs as an experimental platform to explore the evolution of multilingual capabilities in LLMs during the pre-training process. Based on our observations, we propose the Babel Tower Hypothesis, which describes the entire process of LLMs acquiring new language capabilities. During the learning process, multiple languages initially share a single knowledge system dominated by the primary language and gradually develop language-specific knowledge systems. We then validate the above hypothesis by tracking the internal states of the LLMs through identifying working languages and language transferring neurons. Experimental results show that the internal state changes of the LLM are consistent with our Babel Tower Hypothesis. Building on these insights, we propose a novel method to construct an optimized pre-training corpus for multilingual code LLMs, which significantly outperforms LLMs trained on the original corpus. The proposed Babel Tower Hypothesis provides new insights into designing pre-training data distributions to achieve optimal multilingual capabilities in LLMs.

While scaling laws optimize training configurations for large language models (LLMs) through experiments on smaller or early-stage models, they fail to predict emergent abilities due to the absence of such capabilities in these models. To address this, we propose a method that predicts emergent abilities by leveraging proxy tasks. We begin by establishing relevance metrics between the target task and candidate tasks based on performance differences across multiple models. These candidate tasks are then validated for robustness with small model ensembles, leading to the selection of the most appropriate proxy tasks. The predicted performance on the target task is then derived by integrating the evaluation results of these proxies. In a case study on tool utilization capabilities, our method demonstrated a strong correlation between predicted and actual performance, confirming its effectiveness.

Large language models (LLMs) have demonstrated remarkable performance across various language tasks, but their widespread deployment is impeded by their large size and high computational costs. Structural pruning is a prevailing technique used to introduce sparsity into pre-trained models and facilitate direct hardware acceleration during inference by removing redundant connections (structurally-grouped parameters), such as channels and attention heads. Existing structural pruning approaches often employ either global or layer-wise pruning criteria; however, they are hindered by ineffectiveness stemming from inaccurate evaluation of connection importance. Global pruning methods typically assess component importance using near-zero and unreliable gradients, while layer-wise pruning approaches encounter significant pruning error accumulation issues. To this end, we propose a more accurate pruning metric based on the block-wise importance score propagation, termed LLM-BIP. Specifically, LLM-BIP precisely evaluates connection importance by gauging its influence on the respective transformer block output, which can be efficiently approximated in a single forward pass through an upper bound derived from the assumption of Lipschitz continuity. We evaluate the proposed method using LLaMA-7B, Vicuna-7B, and LLaMA-13B across common zero-shot tasks. The results demonstrate that our approach achieves an average of 3.26% increase in accuracy for common reasoning tasks compared to previous best baselines. It also reduces perplexity by 14.09 and 68.76 on average for the WikiText2 dataset and PTB dataset, respectively.

The proliferation of large language models has raised growing concerns about their misuse, particularly in cases where AI-generated text is falsely attributed to human authors. Machine-generated content detectors claim to effectively identify such text under various conditions and from any language model. This paper critically evaluates these claims by assessing several popular detectors (RADAR, Wild, T5Sentinel, Fast-DetectGPT, GPTID, LogRank, Binoculars) on a range of domains, datasets, and models that these detectors have not previously encountered. We employ various prompting strategies to simulate adversarial attacks, demonstrating that even moderate efforts can significantly evade detection. We emphasize the importance of the true positive rate at a specific false positive rate (TPR@FPR) metric and demonstrate that these detectors perform poorly in certain settings, with [email protected] as low as 0\%. Our findings suggest that both trained and zero-shot detectors struggle to maintain high sensitivity while achieving a reasonable true positive rate.

The advancement of generative AI, particularly large language models (LLMs), has a significant impact on politics and democracy, offering potential across various domains, including policymaking, political communication, analysis, and governance. This paper surveys the recent and potential applications of LLMs in politics, examining both their promises and the associated challenges. This paper examines the ways in which LLMs are being employed in legislative processes, political communication, and political analysis. Moreover, we investigate the potential of LLMs in diplomatic and national security contexts, economic and social modeling, and legal applications. While LLMs offer opportunities to enhance efficiency, inclusivity, and decision-making in political processes, they also present challenges related to bias, transparency, and accountability. The paper underscores the necessity for responsible development, ethical considerations, and governance frameworks to ensure that the integration of LLMs into politics aligns with democratic values and promotes a more just and equitable society.

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.

In the rapidly evolving landscape of artificial intelligence (AI), generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data. However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency, particularly in scenarios demanding low latency and high throughput. This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective, standing at the crux of advanced AI innovations and practical system optimizations. We provide in-depth analysis, covering a spectrum of solutions, ranging from cutting-edge algorithmic modifications to groundbreaking changes in system designs. The survey aims to provide a comprehensive understanding of the current state and future directions in efficient LLM serving, offering valuable insights for researchers and practitioners in overcoming the barriers of effective LLM deployment, thereby reshaping the future of AI.

Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

北京阿比特科技有限公司