亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.

相關內容

Compact finite-difference (FD) schemes specify derivative approximations implicitly, thus to achieve parallelism with domain-decomposition suitable partitioning of linear systems is required. Consistent order of accuracy, dispersion, and dissipation is crucial to maintain in wave propagation problems such that deformation of the associated spectra of the discretized problems is not too severe. In this work we consider numerically tuning spectral error, at fixed formal order of accuracy to automatically devise new compact FD schemes. Grid convergence tests indicate error reduction of at least an order of magnitude over standard FD. A proposed hybrid matching-communication strategy maintains the aforementioned properties under domain-decomposition. Under evolution of linear wave-propagation problems utilizing exponential integration or explicit Runge-Kutta methods improvement is found to remain robust. A first demonstration that compact FD methods may be applied to the Z4c formulation of numerical relativity is provided where we couple our header-only, templated C++ implementation to the highly performant GR-Athena++ code. Evolving Z4c on test-bed problems shows at least an order in magnitude reduction in phase error compared to FD for propagated metric components. Stable binary-black-hole evolution utilizing compact FD together with improved convergence is also demonstrated.

With apparently all research on estimation-of-distribution algorithms (EDAs) concentrated on pseudo-Boolean optimization and permutation problems, we undertake the first steps towards using EDAs for problems in which the decision variables can take more than two values, but which are not permutation problems. To this aim, we propose a natural way to extend the known univariate EDAs to such variables. Different from a naive reduction to the binary case, it avoids additional constraints. Since understanding genetic drift is crucial for an optimal parameter choice, we extend the known quantitative analysis of genetic drift to EDAs for multi-valued variables. Roughly speaking, when the variables take $r$ different values, the time for genetic drift to become significant is $r$ times shorter than in the binary case. Consequently, the update strength of the probabilistic model has to be chosen $r$ times lower now. To investigate how desired model updates take place in this framework, we undertake a mathematical runtime analysis on the $r$-valued LeadingOnes problem. We prove that with the right parameters, the multi-valued UMDA solves this problem efficiently in $O(r\log(r)^2 n^2 \log(n))$ function evaluations. Overall, our work shows that EDAs can be adjusted to multi-valued problems, and it gives advice on how to set the main parameters.

Thompson sampling (TS) for the parametric stochastic multi-armed bandits has been well studied under the one-dimensional parametric models. It is often reported that TS is fairly insensitive to the choice of the prior when it comes to regret bounds. However, this property is not necessarily true when multiparameter models are considered, e.g., a Gaussian model with unknown mean and variance parameters. In this paper, we first extend the regret analysis of TS to the model of uniform distributions with unknown supports. Specifically, we show that a switch of noninformative priors drastically affects the regret in expectation. Through our analysis, the uniform prior is proven to be the optimal choice in terms of the expected regret, while the reference prior and the Jeffreys prior are found to be suboptimal, which is consistent with previous findings in the model of Gaussian distributions. However, the uniform prior is specific to the parameterization of the distributions, meaning that if an agent considers different parameterizations of the same model, the agent with the uniform prior might not always achieve the optimal performance. In light of this limitation, we propose a slightly modified TS-based policy, called TS with Truncation (TS-T), which can achieve the asymptotic optimality for the Gaussian distributions and the uniform distributions by using the reference prior and the Jeffreys prior that are invariant under one-to-one reparameterizations. The pre-processig of the posterior distribution is the key to TS-T, where we add an adaptive truncation procedure on the parameter space of the posterior distributions. Simulation results support our analysis, where TS-T shows the best performance in a finite-time horizon compared to other known optimal policies, while TS with the invariant priors performs poorly.

Social and real-world considerations such as robustness, fairness, social welfare and multi-agent tradeoffs have given rise to multi-distribution learning paradigms, such as collaborative, group distributionally robust, and fair federated learning. In each of these settings, a learner seeks to minimize its worst-case loss over a set of $n$ predefined distributions, while using as few samples as possible. In this paper, we establish the optimal sample complexity of these learning paradigms and give algorithms that meet this sample complexity. Importantly, our sample complexity bounds exceed that of the sample complexity of learning a single distribution only by an additive factor of $n \log(n) / \epsilon^2$. These improve upon the best known sample complexity of agnostic federated learning by Mohri et al. by a multiplicative factor of $n$, the sample complexity of collaborative learning by Nguyen and Zakynthinou by a multiplicative factor $\log n / \epsilon^3$, and give the first sample complexity bounds for the group DRO objective of Sagawa et al. To achieve optimal sample complexity, our algorithms learn to sample and learn from distributions on demand. Our algorithm design and analysis is enabled by our extensions of stochastic optimization techniques for solving stochastic zero-sum games. In particular, we contribute variants of Stochastic Mirror Descent that can trade off between players' access to cheap one-off samples or more expensive reusable ones.

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a diffeomorphism or a submersion, we derive new bounds on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ samples $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from random samples, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of $C^{\infty}$ bump functions of varying support sizes. We demonstrate that WENDy is a highly robust and efficient method for parameter inference in differential equations. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. We illustrate the method and its performance in some common population and neuroscience models, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available at (//github.com/MathBioCU/WENDy).

For sparse high-dimensional regression problems, Cox and Battey [1, 9] emphasised the need for confidence sets of models: an enumeration of those small sets of variables that fit the data equivalently well in a suitable statistical sense. This is to be contrasted with the single model returned by penalised regression procedures, effective for prediction but potentially misleading for subject-matter understanding. The proposed construction of such sets relied on preliminary reduction of the full set of variables, and while various possibilities could be considered for this, [9] proposed a succession of regression fits based on incomplete block designs. The purpose of the present paper is to provide insight on both aspects of that work. For an unspecified reduction strategy, we begin by characterising models that are likely to be retained in the model confidence set, emphasising geometric aspects. We then evaluate possible reduction schemes based on penalised regression or marginal screening, before theoretically elucidating the reduction of [9]. We identify features of the covariate matrix that may reduce its efficacy, and indicate improvements to the original proposal. An advantage of the approach is its ability to reveal its own stability or fragility for the data at hand.

Intelligent reflecting surfaces (IRSs) were introduced in the literature in order to enhance the performance of the wireless systems. However, from a cellular service provider's point of view, a concern with the use of an IRS is its effect on out-of-band (OOB) quality of service. Specifically, if there are two operators, say X and Y, providing services in a given geographical area using non-overlapping frequency bands, and if operator X uses an IRS to optimally enhance the throughput of it's users, does the IRS degrade the performance of operator Y? We study this scenario by analyzing the ergodic sum-rates achieved by both the operators under round-robin scheduling. We also derive the complementary cumulative distribution function of the change in the effective channel gain at an OOB user with and without the IRS, which provides deeper insights into the effect of the IRS on the overall channel quality. Surprisingly, we find that even though the IRS is randomly configured from operator Y's point of view, the OOB operator still benefits from the presence of the IRS, witnessing a performance enhancement for free. This happens because the IRS introduces additional paths between the transmitter and receiver, increasing the overall signal power arriving at the receiver and providing diversity benefits. We verify our findings via numerical simulations, and conclude that an IRS is always beneficial to every operator, even when the IRS is deployed to optimally serve only one operator in the system.

In this paper, we provide near-optimal accelerated first-order methods for minimizing a broad class of smooth nonconvex functions that are strictly unimodal on all lines through a minimizer. This function class, which we call the class of smooth quasar-convex functions, is parameterized by a constant $\gamma \in (0,1]$, where $\gamma = 1$ encompasses the classes of smooth convex and star-convex functions, and smaller values of $\gamma$ indicate that the function can be "more nonconvex." We develop a variant of accelerated gradient descent that computes an $\epsilon$-approximate minimizer of a smooth $\gamma$-quasar-convex function with at most $O(\gamma^{-1} \epsilon^{-1/2} \log(\gamma^{-1} \epsilon^{-1}))$ total function and gradient evaluations. We also derive a lower bound of $\Omega(\gamma^{-1} \epsilon^{-1/2})$ on the worst-case number of gradient evaluations required by any deterministic first-order method, showing that, up to a logarithmic factor, no deterministic first-order method can improve upon ours.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司