亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents InterMPL, a semi-supervised learning method of end-to-end automatic speech recognition (ASR) that performs pseudo-labeling (PL) with intermediate supervision. Momentum PL (MPL) trains a connectionist temporal classification (CTC)-based model on unlabeled data by continuously generating pseudo-labels on the fly and improving their quality. In contrast to autoregressive formulations, such as the attention-based encoder-decoder and transducer, CTC is well suited for MPL, or PL-based semi-supervised ASR in general, owing to its simple/fast inference algorithm and robustness against generating collapsed labels. However, CTC generally yields inferior performance than the autoregressive models due to the conditional independence assumption, thereby limiting the performance of MPL. We propose to enhance MPL by introducing intermediate loss, inspired by the recent advances in CTC-based modeling. Specifically, we focus on self-conditional and hierarchical conditional CTC, that apply auxiliary CTC losses to intermediate layers such that the conditional independence assumption is explicitly relaxed. We also explore how pseudo-labels should be generated and used as supervision for intermediate losses. Experimental results in different semi-supervised settings demonstrate that the proposed approach outperforms MPL and improves an ASR model by up to a 12.1% absolute performance gain. In addition, our detailed analysis validates the importance of the intermediate loss.

相關內容

Cross-modal contrastive learning in vision language pretraining (VLP) faces the challenge of (partial) false negatives. In this paper, we study this problem from the perspective of Mutual Information (MI) optimization. It is common sense that InfoNCE loss used in contrastive learning will maximize the lower bound of MI between anchors and their positives, while we theoretically prove that MI involving negatives also matters when noises commonly exist. Guided by a more general lower bound form for optimization, we propose a contrastive learning strategy regulated by progressively refined cross-modal similarity, to more accurately optimize MI between an image/text anchor and its negative texts/images instead of improperly minimizing it. Our method performs competitively on four downstream cross-modal tasks and systematically balances the beneficial and harmful effects of (partial) false negative samples under theoretical guidance.

We propose a hybrid recurrent Video Colorization with Hybrid Generative Adversarial Network (VCGAN), an improved approach to video colorization using end-to-end learning. The VCGAN addresses two prevalent issues in the video colorization domain: Temporal consistency and unification of colorization network and refinement network into a single architecture. To enhance colorization quality and spatiotemporal consistency, the mainstream of generator in VCGAN is assisted by two additional networks, i.e., global feature extractor and placeholder feature extractor, respectively. The global feature extractor encodes the global semantics of grayscale input to enhance colorization quality, whereas the placeholder feature extractor acts as a feedback connection to encode the semantics of the previous colorized frame in order to maintain spatiotemporal consistency. If changing the input for placeholder feature extractor as grayscale input, the hybrid VCGAN also has the potential to perform image colorization. To improve the consistency of far frames, we propose a dense long-term loss that smooths the temporal disparity of every two remote frames. Trained with colorization and temporal losses jointly, VCGAN strikes a good balance between color vividness and video continuity. Experimental results demonstrate that VCGAN produces higher-quality and temporally more consistent colorful videos than existing approaches.

Factor analysis provides a canonical framework for imposing lower-dimensional structure such as sparse covariance in high-dimensional data. High-dimensional data on the same set of variables are often collected under different conditions, for instance in reproducing studies across research groups. In such cases, it is natural to seek to learn the shared versus condition-specific structure. Existing hierarchical extensions of factor analysis have been proposed, but face practical issues including identifiability problems. To address these shortcomings, we propose a class of SUbspace Factor Analysis (SUFA) models, which characterize variation across groups at the level of a lower-dimensional subspace. We prove that the proposed class of SUFA models lead to identifiability of the shared versus group-specific components of the covariance, and study their posterior contraction properties. Taking a Bayesian approach, these contributions are developed alongside efficient posterior computation algorithms. Our sampler fully integrates out latent variables, is easily parallelizable and has complexity that does not depend on sample size. We illustrate the methods through application to integration of multiple gene expression datasets relevant to immunology.

End-to-end ASR models trained on large amount of data tend to be implicitly biased towards language semantics of the training data. Internal language model estimation (ILME) has been proposed to mitigate this bias for autoregressive models such as attention-based encoder-decoder and RNN-T. Typically, ILME is performed by modularizing the acoustic and language components of the model architecture, and eliminating the acoustic input to perform log-linear interpolation with the text-only posterior. However, for CTC-based ASR, it is not as straightforward to decouple the model into such acoustic and language components, as CTC log-posteriors are computed in a non-autoregressive manner. In this work, we propose a novel ILME technique for CTC-based ASR models. Our method iteratively masks the audio timesteps to estimate a pseudo log-likelihood of the internal LM by accumulating log-posteriors for only the masked timesteps. Extensive evaluation across multiple out-of-domain datasets reveals that the proposed approach improves WER by up to 9.8% and OOV F1-score by up to 24.6% relative to Shallow Fusion, when only text data from target domain is available. In the case of zero-shot domain adaptation, with no access to any target domain data, we demonstrate that removing the source domain bias with ILME can still outperform Shallow Fusion to improve WER by up to 9.3% relative.

Self-supervised learning has shown impressive results in downstream classification tasks. However, there is limited work in understanding their failure modes and interpreting their learned representations. In this paper, we study the representation space of state-of-the-art self-supervised models including SimCLR, SwaV, MoCo, BYOL, DINO, SimSiam, VICReg and Barlow Twins. Without the use of class label information, we discover discriminative features that correspond to unique physical attributes in images, present mostly in correctly-classified representations. Using these features, we can compress the representation space by up to $40\%$ without significantly affecting linear classification performance. We then propose Self-Supervised Representation Quality Score (or Q-Score), a model-agnostic, unsupervised score that can reliably predict if a given sample is likely to be mis-classified during linear evaluation, achieving AUPRC of 91.45 on ImageNet-100 and 78.78 on ImageNet-1K. Q-Score can also be used as a regularization term on any pre-trained self-supervised model to remedy low-quality representations. Fine-tuning with Q-Score regularization can boost the linear classification performance of state-of-the-art self-supervised models by up to 5.8% on ImageNet-100 and 3.7% on ImageNet-1K compared to their baselines. Finally, using gradient heatmaps and Salient ImageNet masks, we define a metric to quantify the interpretability of each representation. We show that discriminative features are strongly correlated to core attributes and enhancing these features through Q-score regularization makes representations more interpretable across all self-supervised models.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司