亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Humans perform everyday tasks using a combination of locomotion and manipulation skills. Building a system that can handle both skills is essential to creating virtual humans. We present a physically-simulated human capable of solving box rearrangement tasks, which requires a combination of both skills. We propose a hierarchical control architecture, where each level solves the task at a different level of abstraction, and the result is a physics-based simulated virtual human capable of rearranging boxes in a cluttered environment. The control architecture integrates a planner, diffusion models, and physics-based motion imitation of sparse motion clips using deep reinforcement learning. Boxes can vary in size, weight, shape, and placement height. Code and trained control policies are provided.

相關內容

With the ever-increasing potential of AI to perform personalised tasks, it is becoming essential to develop new machine learning techniques which are data-efficient and do not require hundreds or thousands of training data. In this paper, we explore an Inductive Logic Programming approach for one-shot text classification. In particular, we explore the framework of Meta-Interpretive Learning (MIL), along with using common-sense background knowledge extracted from ConceptNet. Results indicate that MIL can learn text classification rules from a small number of training examples. Moreover, the higher complexity of chosen examples, the higher accuracy of the outcome.

Modern systems mitigate Rowhammer using victim refresh, which refreshes the two neighbours of an aggressor row when it encounters a specified number of activations. Unfortunately, complex attack patterns like Half-Double break victim-refresh, rendering current systems vulnerable. Instead, recently proposed secure Rowhammer mitigations rely on performing mitigative action on the aggressor rather than the victims. Such schemes employ mitigative actions such as row-migration or access-control and include AQUA, SRS, and Blockhammer. While these schemes incur only modest slowdowns at Rowhammer thresholds of few thousand, they incur prohibitive slowdowns (15%-600%) for lower thresholds that are likely in the near future. The goal of our paper is to make secure Rowhammer mitigations practical at such low thresholds. Our paper provides the key insights that benign application encounter thousands of hot rows (receiving more activations than the threshold) due to the memory mapping, which places spatially proximate lines in the same row to maximize row-buffer hitrate. Unfortunately, this causes row to receive activations for many frequently used lines. We propose Rubix, which breaks the spatial correlation in the line-to-row mapping by using an encrypted address to access the memory, reducing the likelihood of hot rows by 2 to 3 orders of magnitude. To aid row-buffer hits, Rubix randomizes a group of 1-4 lines. We also propose Rubix-D, which dynamically changes the line-to-row mapping. Rubix-D minimizes hot-rows and makes it much harder for an adversary to learn the spatial neighbourhood of a row. Rubix reduces the slowdown of AQUA (from 15% to 1%), SRS (from 60% to 2%), and Blockhammer (from 600% to 3%) while incurring a storage of less than 1 Kilobyte.

Multiple intent detection and slot filling are two fundamental and crucial tasks in spoken language understanding. Motivated by the fact that the two tasks are closely related, joint models that can detect intents and extract slots simultaneously are preferred to individual models that perform each task independently. The accuracy of a joint model depends heavily on the ability of the model to transfer information between the two tasks so that the result of one task can correct the result of the other. In addition, since a joint model has multiple outputs, how to train the model effectively is also challenging. In this paper, we present a method for multiple intent detection and slot filling by addressing these challenges. First, we propose a bidirectional joint model that explicitly employs intent information to recognize slots and slot features to detect intents. Second, we introduce a novel method for training the proposed joint model using supervised contrastive learning and self-distillation. Experimental results on two benchmark datasets MixATIS and MixSNIPS show that our method outperforms state-of-the-art models in both tasks. The results also demonstrate the contributions of both bidirectional design and the training method to the accuracy improvement. Our source code is available at //github.com/anhtunguyen98/BiSLU

The pretrain-then-finetune paradigm has been widely used in various unimodal and multimodal tasks. However, finetuning all the parameters of a pre-trained model becomes prohibitive as the model size grows exponentially. To address this issue, the adapter mechanism that freezes the pre-trained model and only finetunes a few extra parameters is introduced and delivers promising results. Most studies on adapter architectures are dedicated to unimodal or bimodal tasks, while the adapter architectures for trimodal tasks have not been investigated yet. This paper introduces a novel Long Short-Term Trimodal Adapter (LSTTA) approach for video understanding tasks involving audio, visual, and language modalities. Based on the pre-trained from the three modalities, the designed adapter module is inserted between the sequential blocks to model the dense interactions across the three modalities. Specifically, LSTTA consists of two types of complementary adapter modules, namely the long-term semantic filtering module and the short-term semantic interaction module. The long-term semantic filtering aims to characterize the temporal importance of the video frames and the short-term semantic interaction module models local interactions within short periods. Compared to previous state-of-the-art trimodal learning methods pre-trained on a large-scale trimodal corpus, LSTTA is more flexible and can inherit any powerful unimodal or bimodal models. Experimental results on four typical trimodal learning tasks show the effectiveness of LSTTA over existing state-of-the-art methods.

In learning-to-rank (LTR), optimizing only the relevance (or the expected ranking utility) can cause representational harm to certain categories of items. Moreover, if there is implicit bias in the relevance scores, LTR models may fail to optimize for true relevance. Previous works have proposed efficient algorithms to train stochastic ranking models that achieve fairness of exposure to the groups ex-ante (or, in expectation), which may not guarantee representation fairness to the groups ex-post, that is, after realizing a ranking from the stochastic ranking model. Typically, ex-post fairness is achieved by post-processing, but previous work does not train stochastic ranking models that are aware of this post-processing. In this paper, we propose a novel objective that maximizes expected relevance only over those rankings that satisfy given representation constraints to ensure ex-post fairness. Building upon recent work on an efficient sampler for ex-post group-fair rankings, we propose a group-fair Plackett-Luce model and show that it can be efficiently optimized for our objective in the LTR framework. Experiments on three real-world datasets show that our group-fair algorithm guarantees fairness alongside usually having better relevance compared to the LTR baselines. In addition, our algorithm also achieves better relevance than post-processing baselines, which also ensures ex-post fairness. Further, when implicit bias is injected into the training data, our algorithm typically outperforms existing LTR baselines in relevance.

Languages are known to describe the world in diverse ways. Across lexicons, diversity is pervasive, appearing through phenomena such as lexical gaps and untranslatability. However, in computational resources, such as multilingual lexical databases, diversity is hardly ever represented. In this paper, we introduce a method to enrich computational lexicons with content relating to linguistic diversity. The method is verified through two large-scale case studies on kinship terminology, a domain known to be diverse across languages and cultures: one case study deals with seven Arabic dialects, while the other one with three Indonesian languages. Our results, made available as browseable and downloadable computational resources, extend prior linguistics research on kinship terminology, and provide insight into the extent of diversity even within linguistically and culturally close communities.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司