A medical provider's summary of a patient visit serves several critical purposes, including clinical decision-making, facilitating hand-offs between providers, and as a reference for the patient. An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue, despite the complexity of patient-generated language. Even minor inaccuracies in visit summaries (for example, summarizing "patient does not have a fever" when a fever is present) can be detrimental to the outcome of care for the patient. This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks that are sequentially built upon. First, we identify medical entities and their affirmations within the conversation to serve as building blocks. We study dynamically constructing few-shot prompts for tasks by conditioning on relevant patient information and use GPT-3 as the backbone for our experiments. We also develop GPT-derived summarization metrics to measure performance against reference summaries quantitatively. Both our human evaluation study and metrics for medical correctness show that summaries generated using this approach are clinically accurate and outperform the baseline approach of summarizing the dialog in a zero-shot, single-prompt setting.
To help the visually impaired enjoy movies, automatic movie narrating systems are expected to narrate accurate, coherent, and role-aware plots when there are no speaking lines of actors. Existing works benchmark this challenge as a normal video captioning task via some simplifications, such as removing role names and evaluating narrations with ngram-based metrics, which makes it difficult for automatic systems to meet the needs of real application scenarios. To narrow this gap, we construct a large-scale Chinese movie benchmark, named Movie101. Closer to real scenarios, the Movie Clip Narrating (MCN) task in our benchmark asks models to generate role-aware narration paragraphs for complete movie clips where no actors are speaking. External knowledge, such as role information and movie genres, is also provided for better movie understanding. Besides, we propose a new metric called Movie Narration Score (MNScore) for movie narrating evaluation, which achieves the best correlation with human evaluation. Our benchmark also supports the Temporal Narration Grounding (TNG) task to investigate clip localization given text descriptions. For both two tasks, our proposed methods well leverage external knowledge and outperform carefully designed baselines. The dataset and codes are released at //github.com/yuezih/Movie101.
Clinical trials often involve the assessment of multiple endpoints to comprehensively evaluate the efficacy and safety of interventions. In the work, we consider a global nonparametric testing procedure based on multivariate rank for the analysis of multiple endpoints in clinical trials. Unlike other existing approaches that rely on pairwise comparisons for each individual endpoint, the proposed method directly incorporates the multivariate ranks of the observations. By considering the joint ranking of all endpoints, the proposed approach provides robustness against diverse data distributions and censoring mechanisms commonly encountered in clinical trials. Through extensive simulations, we demonstrate the superior performance of the multivariate rank-based approach in controlling type I error and achieving higher power compared to existing rank-based methods. The simulations illustrate the advantages of leveraging multivariate ranks and highlight the robustness of the approach in various settings. The proposed method offers an effective tool for the analysis of multiple endpoints in clinical trials, enhancing the reliability and efficiency of outcome evaluations.
Large language models (LLMs) represent a major advance in artificial intelligence (AI) research. However, the widespread use of LLMs is also coupled with significant ethical and social challenges. Previous research has pointed towards auditing as a promising governance mechanism to help ensure that AI systems are designed and deployed in ways that are ethical, legal, and technically robust. However, existing auditing procedures fail to address the governance challenges posed by LLMs, which display emergent capabilities and are adaptable to a wide range of downstream tasks. In this article, we address that gap by outlining a novel blueprint for how to audit LLMs. Specifically, we propose a three-layered approach, whereby governance audits (of technology providers that design and disseminate LLMs), model audits (of LLMs after pre-training but prior to their release), and application audits (of applications based on LLMs) complement and inform each other. We show how audits, when conducted in a structured and coordinated manner on all three levels, can be a feasible and effective mechanism for identifying and managing some of the ethical and social risks posed by LLMs. However, it is important to remain realistic about what auditing can reasonably be expected to achieve. Therefore, we discuss the limitations not only of our three-layered approach but also of the prospect of auditing LLMs at all. Ultimately, this article seeks to expand the methodological toolkit available to technology providers and policymakers who wish to analyse and evaluate LLMs from technical, ethical, and legal perspectives.
Using large language models (LLMs) for source code has recently gained attention. LLMs, such as Transformer-based models like Codex and ChatGPT, have been shown to be highly capable of solving a wide range of programming problems. However, the extent to which LLMs understand problem descriptions and generate programs accordingly or just retrieve source code from the most relevant problem in training data based on superficial cues has not been discovered yet. To explore this research question, we conduct experiments to understand the robustness of several popular LLMs, CodeGen and GPT-3.5 series models, capable of tackling code generation tasks in introductory programming problems. Our experimental results show that CodeGen and Codex are sensitive to the superficial modifications of problem descriptions and significantly impact code generation performance. Furthermore, we observe that Codex relies on variable names, as randomized variables decrease the solved rate significantly. However, the state-of-the-art (SOTA) models, such as InstructGPT and ChatGPT, show higher robustness to superficial modifications and have an outstanding capability for solving programming problems. This highlights the fact that slight modifications to the prompts given to the LLMs can greatly affect code generation performance, and careful formatting of prompts is essential for high-quality code generation, while the SOTA models are becoming more robust to perturbations.
The primary aim of this research was to address the limitations observed in the medical knowledge of prevalent large language models (LLMs) such as ChatGPT, by creating a specialized language model with enhanced accuracy in medical advice. We achieved this by adapting and refining the large language model meta-AI (LLaMA) using a large dataset of 100,000 patient-doctor dialogues sourced from a widely used online medical consultation platform. These conversations were cleaned and anonymized to respect privacy concerns. In addition to the model refinement, we incorporated a self-directed information retrieval mechanism, allowing the model to access and utilize real-time information from online sources like Wikipedia and data from curated offline medical databases. The fine-tuning of the model with real-world patient-doctor interactions significantly improved the model's ability to understand patient needs and provide informed advice. By equipping the model with self-directed information retrieval from reliable online and offline sources, we observed substantial improvements in the accuracy of its responses. Our proposed ChatDoctor, represents a significant advancement in medical LLMs, demonstrating a significant improvement in understanding patient inquiries and providing accurate advice. Given the high stakes and low error tolerance in the medical field, such enhancements in providing accurate and reliable information are not only beneficial but essential.
We curate a comprehensive dataset of 4,550 questions and solutions from problem sets, midterm exams, and final exams across all MIT Mathematics and Electrical Engineering and Computer Science (EECS) courses required for obtaining a degree. We evaluate the ability of large language models to fulfill the graduation requirements for any MIT major in Mathematics and EECS. Our results demonstrate that GPT-3.5 successfully solves a third of the entire MIT curriculum, while GPT-4, with prompt engineering, achieves a perfect solve rate on a test set excluding questions based on images. We fine-tune an open-source large language model on this dataset. We employ GPT-4 to automatically grade model responses, providing a detailed performance breakdown by course, question, and answer type. By embedding questions in a low-dimensional space, we explore the relationships between questions, topics, and classes and discover which questions and classes are required for solving other questions and classes through few-shot learning. Our analysis offers valuable insights into course prerequisites and curriculum design, highlighting language models' potential for learning and improving Mathematics and EECS education.
Transformer based pre-trained models such as BERT and its variants, which are trained on large corpora, have demonstrated tremendous success for natural language processing (NLP) tasks. Most of academic works are based on the English language; however, the number of multilingual and language specific studies increase steadily. Furthermore, several studies claimed that language specific models outperform multilingual models in various tasks. Therefore, the community tends to train or fine-tune the models for the language of their case study, specifically. In this paper, we focus on Turkish maps data and thoroughly evaluate both multilingual and Turkish based BERT, DistilBERT, ELECTRA and RoBERTa. Besides, we also propose a MultiLayer Perceptron (MLP) for fine-tuning BERT in addition to the standard approach of one-layer fine-tuning. For the dataset, a mid-sized Address Parsing corpus taken with a relatively high quality is constructed. Conducted experiments on this dataset indicate that Turkish language specific models with MLP fine-tuning yields slightly better results when compared to the multilingual fine-tuned models. Moreover, visualization of address tokens' representations further indicates the effectiveness of BERT variants for classifying a variety of addresses.
Current large language models (LLMs) can exhibit near-human levels of performance on many natural language tasks, including open-domain question answering. Unfortunately, they also convincingly hallucinate incorrect answers, so that responses to questions must be verified against external sources before they can be accepted at face value. In this paper, we report a simple experiment to automatically verify generated answers against a corpus. After presenting a question to an LLM and receiving a generated answer, we query the corpus with the combination of the question + generated answer. We then present the LLM with the combination of the question + generated answer + retrieved answer, prompting it to indicate if the generated answer can be supported by the retrieved answer. We base our experiment on questions and passages from the MS MARCO (V1) test collection, exploring three retrieval approaches ranging from standard BM25 to a full question answering stack, including a reader based on the LLM. For a large fraction of questions, we find that an LLM is capable of verifying its generated answer if appropriate supporting material is provided. However, with an accuracy of 70-80%, this approach cannot be fully relied upon to detect hallucinations.
Efficient human activity recognition (HAR) using sensor data needs a significant volume of annotated data. The growing volume of unlabelled sensor data has challenged conventional practices for gathering HAR annotations with human-in-the-loop approaches, often leading to the collection of shallower annotations. These shallower annotations ignore the fine-grained micro-activities that constitute any complex activities of daily living (ADL). Understanding this, we, in this paper, first analyze this lack of granular annotations from available pre-annotated datasets to understand the practical inconsistencies and also perform a detailed survey to look into the human perception surrounding annotations. Drawing motivations from these, we next develop the framework AmicroN that can automatically generate micro-activity annotations using locomotive signatures and the available coarse-grain macro-activity labels. In the backend, AmicroN applies change-point detection followed by zero-shot learning with activity embeddings to identify the unseen micro-activities in an unsupervised manner. Rigorous evaluation on publicly available datasets shows that AmicroN can accurately generate micro-activity annotations with a median F1-score of >0.75. Additionally, we also show that AmicroN can be used in a plug-and-play manner with Large Language Models (LLMs) to obtain the micro-activity labels, thus making it more practical for realistic applications.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.