亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emerging workloads in high-performance computing (HPC) are embracing significant changes, such as having diverse resource requirements instead of being CPU-centric. This advancement forces cluster schedulers to consider multiple schedulable resources during decision-making. Existing scheduling studies rely on heuristic or optimization methods, which are limited by an inability to adapt to new scenarios for ensuring long-term scheduling performance. We present an intelligent scheduling agent named MRSch for multi-resource scheduling in HPC that leverages direct future prediction (DFP), an advanced multi-objective reinforcement learning algorithm. While DFP demonstrated outstanding performance in a gaming competition, it has not been previously explored in the context of HPC scheduling. Several key techniques are developed in this study to tackle the challenges involved in multi-resource scheduling. These techniques enable MRSch to learn an appropriate scheduling policy automatically and dynamically adapt its policy in response to workload changes via dynamic resource prioritizing. We compare MRSch with existing scheduling methods through extensive tracebase simulations. Our results demonstrate that MRSch improves scheduling performance by up to 48% compared to the existing scheduling methods.

相關內容

Video prediction, predicting future frames from the previous ones, has broad applications such as autonomous driving and weather forecasting. Existing state-of-the-art methods typically focus on extracting either spatial, temporal, or spatiotemporal features from videos. Different feature focuses, resulting from different network architectures, may make the resultant models excel at some video prediction tasks but perform poorly on others. Towards a more generic video prediction solution, we explicitly model these features in a unified encoder-decoder framework and propose a novel simple alternating Mixer (SIAM). The novelty of SIAM lies in the design of dimension alternating mixing (DaMi) blocks, which can model spatial, temporal, and spatiotemporal features through alternating the dimensions of the feature maps. Extensive experimental results demonstrate the superior performance of the proposed SIAM on four benchmark video datasets covering both synthetic and real-world scenarios.

There has been a significant research interest in employing large language models to empower intelligent robots with complex reasoning. Existing work focuses on harnessing their abilities to reason about the histories of their actions and observations. In this paper, we explore a new dimension in which large language models may benefit robotics planning. In particular, we propose Statler, a framework in which large language models are prompted to maintain an estimate of the world state, which are often unobservable, and track its transition as new actions are taken. Our framework then conditions each action on the estimate of the current world state. Despite being conceptually simple, our Statler framework significantly outperforms strong competing methods (e.g., Code-as-Policies) on several robot planning tasks. Additionally, it has the potential advantage of scaling up to more challenging long-horizon planning tasks.

Black-box optimization problems often require simultaneously optimizing different types of variables, such as continuous, integer, and categorical variables. Unlike integer variables, categorical variables do not necessarily have a meaningful order, and the discretization approach of continuous variables does not work well. Although several Bayesian optimization methods can deal with mixed-category black-box optimization (MC-BBO), they suffer from a lack of scalability to high-dimensional problems and internal computational cost. This paper proposes CatCMA, a stochastic optimization method for MC-BBO problems, which employs the joint probability distribution of multivariate Gaussian and categorical distributions as the search distribution. CatCMA updates the parameters of the joint probability distribution in the natural gradient direction. CatCMA also incorporates the acceleration techniques used in the covariance matrix adaptation evolution strategy (CMA-ES) and the stochastic natural gradient method, such as step-size adaptation and learning rate adaptation. In addition, we restrict the ranges of the categorical distribution parameters by margin to prevent premature convergence and analytically derive a promising margin setting. Numerical experiments show that the performance of CatCMA is superior and more robust to problem dimensions compared to state-of-the-art Bayesian optimization algorithms.

Text-guided image editing is widely needed in daily life, ranging from personal use to professional applications such as Photoshop. However, existing methods are either zero-shot or trained on an automatically synthesized dataset, which contains a high volume of noise. Thus, they still require lots of manual tuning to produce desirable outcomes in practice. To address this issue, we introduce MagicBrush (//osu-nlp-group.github.io/MagicBrush/), the first large-scale, manually annotated dataset for instruction-guided real image editing that covers diverse scenarios: single-turn, multi-turn, mask-provided, and mask-free editing. MagicBrush comprises over 10K manually annotated triplets (source image, instruction, target image), which supports trainining large-scale text-guided image editing models. We fine-tune InstructPix2Pix on MagicBrush and show that the new model can produce much better images according to human evaluation. We further conduct extensive experiments to evaluate current image editing baselines from multiple dimensions including quantitative, qualitative, and human evaluations. The results reveal the challenging nature of our dataset and the gap between current baselines and real-world editing needs.

Today's analog/mixed-signal (AMS) integrated circuit (IC) designs demand substantial manual intervention. The advent of multimodal large language models (MLLMs) has unveiled significant potential across various fields, suggesting their applicability in streamlining large-scale AMS IC design as well. A bottleneck in employing MLLMs for automatic AMS circuit generation is the absence of a comprehensive dataset delineating the schematic-netlist relationship. We therefore design an automatic technique for converting schematics into netlists, and create dataset AMSNet, encompassing transistor-level schematics and corresponding SPICE format netlists. With a growing size, AMSNet can significantly facilitate exploration of MLLM applications in AMS circuit design. We have made an initial set of netlists public, and will make both our netlist generation tool and the full dataset available upon publishing of this paper.

Recent advances in generative imagery have brought forth outpainting and inpainting models that can produce high-quality, plausible image content in unknown regions. However, the content these models hallucinate is necessarily inauthentic, since they are unaware of the true scene. In this work, we propose RealFill, a novel generative approach for image completion that fills in missing regions of an image with the content that should have been there. RealFill is a generative inpainting model that is personalized using only a few reference images of a scene. These reference images do not have to be aligned with the target image, and can be taken with drastically varying viewpoints, lighting conditions, camera apertures, or image styles. Once personalized, RealFill is able to complete a target image with visually compelling contents that are faithful to the original scene. We evaluate RealFill on a new image completion benchmark that covers a set of diverse and challenging scenarios, and find that it outperforms existing approaches by a large margin. Project page: //realfill.github.io

Benchmarks are among the main drivers of progress in software engineering research. However, many current benchmarks are limited by inadequate system oracles and sparse unit tests. Our Tests4Py benchmark, derived from the BugsInPy benchmark, addresses these limitations. It includes 73 bugs from seven real-world Python applications and six bugs from example programs. Each subject in Tests4Py is equipped with an oracle for verifying functional correctness and supports both system and unit test generation. This allows for comprehensive qualitative studies and extensive evaluations, making Tests4Py a cutting-edge benchmark for research in test generation, debugging, and automatic program repair.

Since the advent of Deepfakes in digital media, the development of robust and reliable detection mechanism is urgently called for. In this study, we explore a novel approach to Deepfake detection by utilizing electroencephalography (EEG) measured from the neural processing of a human participant who viewed and categorized Deepfake stimuli from the FaceForensics++ datset. These measurements serve as input features to a binary support vector classifier, trained to discriminate between real and manipulated facial images. We examine whether EEG data can inform Deepfake detection and also if it can provide a generalized representation capable of identifying Deepfakes beyond the training domain. Our preliminary results indicate that human neural processing signals can be successfully integrated into Deepfake detection frameworks and hint at the potential for a generalized neural representation of artifacts in computer generated faces. Moreover, our study provides next steps towards the understanding of how digital realism is embedded in the human cognitive system, possibly enabling the development of more realistic digital avatars in the future.

We present cVIL, a class-centric approach to visual interactive labeling, which facilitates human annotation of large and complex image data sets. cVIL uses different property measures to support instance labeling for labeling difficult instances and batch labeling to quickly label easy instances. Simulated experiments reveal that cVIL with batch labeling can outperform traditional labeling approaches based on active learning. In a user study, cVIL led to better accuracy and higher user preference compared to a traditional instance-based visual interactive labeling approach based on 2D scatterplots.

Edge computing provides resources for IoT workloads at the network edge. Monitoring systems are vital for efficiently managing resources and application workloads by collecting, storing, and providing relevant information about the state of the resources. However, traditional monitoring systems have a centralized architecture for both data plane and control plane, which increases latency, creates a failure bottleneck, and faces challenges in providing quick and trustworthy data in volatile edge environments, especially where infrastructures are often built upon failure-prone, unsophisticated computing and network resources. Thus, we propose DEMon, a decentralized, self-adaptive monitoring system for edge. DEMon leverages the stochastic gossip communication protocol at its core. It develops efficient protocols for information dissemination, communication, and retrieval, avoiding a single point of failure and ensuring fast and trustworthy data access. Its decentralized control enables self-adaptive management of monitoring parameters, addressing the trade-offs between the quality of service of monitoring and resource consumption. We implement the proposed system as a lightweight and portable container-based system and evaluate it through experiments. We also present a use case demonstrating its feasibility. The results show that DEMon efficiently disseminates and retrieves the monitoring information, addressing the challenges of edge monitoring.

北京阿比特科技有限公司