Although large language models (LLMs) have achieved significant success in various tasks, they often struggle with hallucination problems, especially in scenarios requiring deep and responsible reasoning. These issues could be partially addressed by introducing external knowledge graphs (KG) in LLM reasoning. In this paper, we propose a new LLM-KG integrating paradigm ``$\hbox{LLM}\otimes\hbox{KG}$'' which treats the LLM as an agent to interactively explore related entities and relations on KGs and perform reasoning based on the retrieved knowledge. We further implement this paradigm by introducing a new approach called Think-on-Graph (ToG), in which the LLM agent iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results. We use a number of well-designed experiments to examine and illustrate the following advantages of ToG: 1) compared with LLMs, ToG has better deep reasoning power; 2) ToG has the ability of knowledge traceability and knowledge correctability by leveraging LLMs reasoning and expert feedback; 3) ToG provides a flexible plug-and-play framework for different LLMs, KGs and prompting strategies without any additional training cost; 4) the performance of ToG with small LLM models could exceed large LLM such as GPT-4 in certain scenarios and this reduces the cost of LLM deployment and application. As a training-free method with lower computational cost and better generality, ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
Document retrieval in many languages has been largely relying on multi-lingual models, and leveraging the vast wealth of English training data. In Japanese, the best performing deep-learning based retrieval approaches rely on multilingual dense embeddings. In this work, we introduce (1) a hard-negative augmented version of the Japanese MMARCO dataset and (2) JaColBERT, a document retrieval model built on the ColBERT model architecture, specifically for Japanese. JaColBERT vastly outperform all previous monolingual retrieval approaches and competes with the best multilingual methods, despite unfavourable evaluation settings (out-of-domain vs. in-domain for the multilingual models). JaColBERT reaches an average Recall@10 of 0.813, noticeably ahead of the previous monolingual best-performing model (0.716) and only slightly behind multilingual-e5-base (0.820), though more noticeably behind multilingual-e5-large (0.856). These results are achieved using only a limited, entirely Japanese, training set, more than two orders of magnitudes smaller than multilingual embedding models. We believe these results show great promise to support retrieval-enhanced application pipelines in a wide variety of domains.
Federated Learning (FL) has emerged as a promising distributed learning paradigm that enables multiple clients to learn a global model collaboratively without sharing their private data. However, the effectiveness of FL is highly dependent on the quality of the data that is being used for training. In particular, data heterogeneity issues, such as label distribution skew and feature skew, can significantly impact the performance of FL. Previous studies in FL have primarily focused on addressing label distribution skew data heterogeneity, while only a few recent works have made initial progress in tackling feature skew issues. Notably, these two forms of data heterogeneity have been studied separately and have not been well explored within a unified FL framework. To address this gap, we propose Fed-CO$_{2}$, a universal FL framework that handles both label distribution skew and feature skew within a \textbf{C}ooperation mechanism between the \textbf{O}nline and \textbf{O}ffline models. Specifically, the online model learns general knowledge that is shared among all clients, while the offline model is trained locally to learn the specialized knowledge of each individual client. To further enhance model cooperation in the presence of feature shifts, we design an intra-client knowledge transfer mechanism that reinforces mutual learning between the online and offline models, and an inter-client knowledge transfer mechanism to increase the models' domain generalization ability. Extensive experiments show that our Fed-CO$_{2}$ outperforms a wide range of existing personalized federated learning algorithms in terms of handling label distribution skew and feature skew, both individually and collectively. The empirical results are supported by our convergence analyses in a simplified setting.
Large language models (LLMs) have shown impressive capabilities in various tasks, yet they still struggle with math reasoning. Despite efforts to optimize Chain-of-Thoughts (CoT) prompts and fine-tune LLMs, the potential of few-shot learning remains unexplored. In this work, we propose CoT-Influx, a novel approach pushing the boundaries of few-shot CoT learning to improve LLM math reasoning capabilities. CoT-Influx addresses the challenges of the selection of useful examples and limited number of examples due to restricted context window length. Inspired by our observation that natural language inputs contain many redundancy, we propose a coarse-to-fine pruner as a plug-and-play module for LLMs, which first identifies as many crucial CoT examples as possible and then further prunes unimportant tokens within the context window. To train the pruner, we collect a math reasoning dataset with diverse difficulty and steps, introduce a reward to measure both the input's effectiveness for math reasoning and token length constraints, and propose a novel training approach with reinforcement learning. As a result, CoT-Influx significantly outperforms CoT and few-shot prompting baselines across various LLMs (LLaMA2-7B, 13B, 70B) and 5 mathematical datasets, achieving up to 4.55% absolute improvements. Remarkably, without any fine-tuning, LLaMA2-70B with CoT-Influx surpasses GPT-3.5 and a wide range of larger LLMs (PaLM, Minerva, etc.) on the GSM8K.
Large language models (LLMs), such as ChatGPT, have demonstrated impressive capabilities in various tasks and attracted an increasing interest as a natural language interface across many domains. Recently, large vision-language models (VLMs) like BLIP-2 and GPT-4 have been intensively investigated, which learn rich vision-language correlation from image-text pairs. However, despite these developments, the application of LLMs and VLMs in image quality assessment (IQA), particularly in medical imaging, remains to be explored, which is valuable for objective performance evaluation and potential supplement or even replacement of radiologists' opinions. To this end, this paper introduces IQAGPT, an innovative image quality assessment system integrating an image quality captioning VLM with ChatGPT for generating quality scores and textual reports. First, we build a CT-IQA dataset for training and evaluation, comprising 1,000 CT slices with diverse quality levels professionally annotated. To better leverage the capabilities of LLMs, we convert annotated quality scores into semantically rich text descriptions using a prompt template. Second, we fine-tune the image quality captioning VLM on the CT-IQA dataset to generate quality descriptions. The captioning model fuses the image and text features through cross-modal attention. Third, based on the quality descriptions, users can talk with ChatGPT to rate image quality scores or produce a radiological quality report. Our preliminary results demonstrate the feasibility of assessing image quality with large models. Remarkably, our IQAGPT outperforms GPT-4 and CLIP-IQA, as well as the multi-task classification and regression models that solely rely on images.
The increased presence of large language models (LLMs) in educational settings has ignited debates concerning negative repercussions, including overreliance and inadequate task reflection. Our work advocates moderated usage of such models, designed in a way that supports students and encourages critical thinking. We developed two moderated interaction methods with ChatGPT: hint-based assistance and presenting multiple answer choices. In a study with students (N=40) answering physics questions, we compared the effects of our moderated models against two baseline settings: unmoderated ChatGPT access and internet searches. We analyzed the interaction strategies and found that the moderated versions exhibited less unreflected usage (e.g., copy \& paste) compared to the unmoderated condition. However, neither ChatGPT-supported condition could match the ratio of reflected usage present in internet searches. Our research highlights the potential benefits of moderating language models, showing a research direction toward designing effective AI-supported educational strategies.
Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.