亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a broad class of random bipartite networks, the distribution of which is invariant under permutation within each type of nodes. We are interested in $U$-statistics defined on the adjacency matrix of such a network, for which we define a new type of Hoeffding decomposition. This decomposition enables us to characterize non-degenerate $U$-statistics -- which are then asymptotically normal -- and provides us with a natural and easy-to-implement estimator of their asymptotic variance. \\ We illustrate the use of this general approach on some typical random graph models and use it to estimate or test some quantities characterizing the topology of the associated network. We also assess the accuracy and the power of the proposed estimates or tests, via a simulation study.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網(wang)絡會議。 Publisher:IFIP。 SIT:

We consider covariance estimation of any subgaussian distribution from finitely many i.i.d. samples that are quantized to one bit of information per entry. Recent work has shown that a reliable estimator can be constructed if uniformly distributed dithers on $[-\lambda,\lambda]$ are used in the one-bit quantizer. This estimator enjoys near-minimax optimal, non-asymptotic error estimates in the operator and Frobenius norms if $\lambda$ is chosen proportional to the largest variance of the distribution. However, this quantity is not known a-priori, and in practice $\lambda$ needs to be carefully tuned to achieve good performance. In this work we resolve this problem by introducing a tuning-free variant of this estimator, which replaces $\lambda$ by a data-driven quantity. We prove that this estimator satisfies the same non-asymptotic error estimates - up to small (logarithmic) losses and a slightly worse probability estimate. Our proof relies on a new version of the Burkholder-Rosenthal inequalities for matrix martingales, which is expected to be of independent interest.

Community detection is a crucial task to unravel the intricate dynamics of online social networks. The emergence of these networks has dramatically increased the volume and speed of interactions among users, presenting researchers with unprecedented opportunities to explore and analyze the underlying structure of social communities. Despite a growing interest in tracking the evolution of groups of users in real-world social networks, the predominant focus of community detection efforts has been on communities within static networks. In this paper, we introduce a novel framework for tracking communities over time in a dynamic network, where a series of significant events is identified for each community. Our framework adopts a modularity-based strategy and does not require a predefined threshold, leading to a more accurate and robust tracking of dynamic communities. We validated the efficacy of our framework through extensive experiments on synthetic networks featuring embedded events. The results indicate that our framework can outperform the state-of-the-art methods. Furthermore, we utilized the proposed approach on a Twitter network comprising over 60,000 users and 5 million tweets throughout 2020, showcasing its potential in identifying dynamic communities in real-world scenarios. The proposed framework can be applied to different social networks and provides a valuable tool to gain deeper insights into the evolution of communities in dynamic social networks.

Heavy tails is a common feature of filtering distributions that results from the nonlinear dynamical and observation processes as well as the uncertainty from physical sensors. In these settings, the Kalman filter and its ensemble version - the ensemble Kalman filter (EnKF) - that have been designed under Gaussian assumptions result in degraded performance. t-distributions are a parametric family of distributions whose tail-heaviness is modulated by a degree of freedom $\nu$. Interestingly, Cauchy and Gaussian distributions correspond to the extreme cases of a t-distribution for $\nu = 1$ and $\nu = \infty$, respectively. Leveraging tools from measure transport (Spantini et al., SIAM Review, 2022), we present a generalization of the EnKF whose prior-to-posterior update leads to exact inference for t-distributions. We demonstrate that this filter is less sensitive to outlying synthetic observations generated by the observation model for small $\nu$. Moreover, it recovers the Kalman filter for $\nu = \infty$. For nonlinear state-space models with heavy-tailed noise, we propose an algorithm to estimate the prior-to-posterior update from samples of joint forecast distribution of the states and observations. We rely on a regularized expectation-maximization (EM) algorithm to estimate the mean, scale matrix, and degree of freedom of heavy-tailed \textit{t}-distributions from limited samples (Finegold and Drton, arXiv preprint, 2014). Leveraging the conditional independence of the joint forecast distribution, we regularize the scale matrix with an $l1$ sparsity-promoting penalization of the log-likelihood at each iteration of the EM algorithm. By sequentially estimating the degree of freedom at each analysis step, our filter can adapt its prior-to-posterior update to the tail-heaviness of the data. We demonstrate the benefits of this new ensemble filter on challenging filtering problems.

Physics informed neural network (PINN) based solution methods for differential equations have recently shown success in a variety of scientific computing applications. Several authors have reported difficulties, however, when using PINNs to solve equations with multiscale features. The objective of the present work is to illustrate and explain the difficulty of using standard PINNs for the particular case of divergence-form elliptic partial differential equations (PDEs) with oscillatory coefficients present in the differential operator. We show that if the coefficient in the elliptic operator $a^{\epsilon}(x)$ is of the form $a(x/\epsilon)$ for a 1-periodic coercive function $a(\cdot)$, then the Frobenius norm of the neural tangent kernel (NTK) matrix associated to the loss function grows as $1/\epsilon^2$. This implies that as the separation of scales in the problem increases, training the neural network with gradient descent based methods to achieve an accurate approximation of the solution to the PDE becomes increasingly difficult. Numerical examples illustrate the stiffness of the optimization problem.

Data on neighbourhood characteristics are not typically collected in epidemiological studies. They are however useful in the study of small-area health inequalities. Neighbourhood characteristics are collected in some surveys and could be linked to the data of other studies. We propose to use kriging based on semi-variogram models to predict values at non-observed locations with the aim of constructing bespoke indices of neighbourhood characteristics to be linked to data from epidemiological studies. We perform a simulation study to assess the feasibility of the method as well as a case study using data from the RECORD study. Apart from having enough observed data at small distances to the non-observed locations, a good fitting semi-variogram, a larger range and the absence of nugget effects for the semi-variogram models are factors leading to a higher reliability.

The automated detection of cancerous tumors has attracted interest mainly during the last decade, due to the necessity of early and efficient diagnosis that will lead to the most effective possible treatment of the impending risk. Several machine learning and artificial intelligence methodologies has been employed aiming to provide trustworthy helping tools that will contribute efficiently to this attempt. In this article, we present a low-complexity convolutional neural network architecture for tumor classification enhanced by a robust image augmentation methodology. The effectiveness of the presented deep learning model has been investigated based on 3 datasets containing brain, kidney and lung images, showing remarkable diagnostic efficiency with classification accuracies of 99.33%, 100% and 99.7% for the 3 datasets respectively. The impact of the augmentation preprocessing step has also been extensively examined using 4 evaluation measures. The proposed low-complexity scheme, in contrast to other models in the literature, renders our model quite robust to cases of overfitting that typically accompany small datasets frequently encountered in medical classification challenges. Finally, the model can be easily re-trained in case additional volume images are included, as its simplistic architecture does not impose a significant computational burden.

Recurrent neural networks (RNNs) have yielded promising results for both recognizing objects in challenging conditions and modeling aspects of primate vision. However, the representational dynamics of recurrent computations remain poorly understood, especially in large-scale visual models. Here, we studied such dynamics in RNNs trained for object classification on MiniEcoset, a novel subset of ecoset. We report two main insights. First, upon inference, representations continued to evolve after correct classification, suggesting a lack of the notion of being ``done with classification''. Second, focusing on ``readout zones'' as a way to characterize the activation trajectories, we observe that misclassified representations exhibit activation patterns with lower L2 norm, and are positioned more peripherally in the readout zones. Such arrangements help the misclassified representations move into the correct zones as time progresses. Our findings generalize to networks with lateral and top-down connections, and include both additive and multiplicative interactions with the bottom-up sweep. The results therefore contribute to a general understanding of RNN dynamics in naturalistic tasks. We hope that the analysis framework will aid future investigations of other types of RNNs, including understanding of representational dynamics in primate vision.

Dynamic networks consist of a sequence of time-varying networks, and it is of great importance to detect the network change points. Most existing methods focus on detecting abrupt change points, necessitating the assumption that the underlying network probability matrix remains constant between adjacent change points. This paper introduces a new model that allows the network probability matrix to undergo continuous shifting, while the latent network structure, represented via the embedding subspace, only changes at certain time points. Two novel statistics are proposed to jointly detect these network subspace change points, followed by a carefully refined detection procedure. Theoretically, we show that the proposed method is asymptotically consistent in terms of change point detection, and also establish the impossibility region for detecting these network subspace change points. The advantage of the proposed method is also supported by extensive numerical experiments on both synthetic networks and a UK politician social network.

Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate P\'olya tree on $R^k$ and project it to the unit hypersphere $S^k$ to define a new Bayesian nonparametric model for directional data. We study the properties of the proposed model and in particular, concentrate on the implied conditional distributions of some directions given the others to define a directional-directional regression model. We also define a multivariate linear regression model with P\'olya tree error and project it to define a linear-directional regression model. We obtain the posterior characterisation of all models and show their performance with simulated and real datasets.

The generalized Golub-Kahan bidiagonalization has been used to solve saddle-point systems where the leading block is symmetric and positive definite. We extend this iterative method for the case where the symmetry condition no longer holds. We do so by relying on the known connection the algorithm has with the Conjugate Gradient method and following the line of reasoning that adapts the latter into the Full Orthogonalization Method. We propose appropriate stopping criteria based on the residual and an estimate of the energy norm for the error associated with the primal variable. Numerical comparison with GMRES highlights the advantages of our proposed strategy regarding its low memory requirements and the associated implications.

北京阿比特科技有限公司