亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The presence of intermediate confounders, also called recanting witnesses, is a fundamental challenge to the investigation of causal mechanisms in mediation analysis, preventing the identification of natural path-specific effects. Proposed alternative parameters (such as randomizational interventional effects) are problematic because they can be non-null even when there is no mediation for any individual in the population; i.e., they are not an average of underlying individual-level mechanisms. In this paper we develop a novel method for mediation analysis in settings with intermediate confounding, with guarantees that the causal parameters are summaries of the individual-level mechanisms of interest. The method is based on recently proposed ideas that view causality as the transfer of information, and thus replace recanting witnesses by draws from their conditional distribution, what we call "recanting twins". We show that, in the absence of intermediate confounding, recanting twin effects recover natural path-specific effects. We present the assumptions required for identification of recanting twins effects under a standard structural causal model, as well as the assumptions under which the recanting twin identification formulas can be interpreted in the context of the recently proposed separable effects models. To estimate recanting-twin effects, we develop efficient semi-parametric estimators that allow the use of data driven methods in the estimation of the nuisance parameters. We present numerical studies of the methods using synthetic data, as well as an application to evaluate the role of new-onset anxiety and depressive disorder in explaining the relationship between gabapentin/pregabalin prescription and incident opioid use disorder among Medicaid beneficiaries with chronic pain.

相關內容

This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.

Several mixed-effects models for longitudinal data have been proposed to accommodate the non-linearity of late-life cognitive trajectories and assess the putative influence of covariates on it. No prior research provides a side-by-side examination of these models to offer guidance on their proper application and interpretation. In this work, we examined five statistical approaches previously used to answer research questions related to non-linear changes in cognitive aging: the linear mixed model (LMM) with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model, and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating associations of education on cognitive change before death. Lastly, we performed a simulation study to empirically evaluate the models and provide practical recommendations. Except for the LMM-quadratic, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models have no interpretable nonlinearity parameters, their convergence was easier to achieve, and they allow graphical interpretation. In contrast, piecewise and sigmoidal models, with interpretable non-linear parameters, may require more data to achieve convergence.

For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.

Statistical analysis of extremes can be used to predict the probability of future extreme events, such as large rainfalls or devastating windstorms. The quality of these forecasts can be measured through scoring rules. Locally scale invariant scoring rules give equal importance to the forecasts at different locations regardless of differences in the prediction uncertainty. This is a useful feature when computing average scores but can be an unnecessarily strict requirement when mostly concerned with extremes. We propose the concept of local weight-scale invariance, describing scoring rules fulfilling local scale invariance in a certain region of interest, and as a special case local tail-scale invariance, for large events. Moreover, a new version of the weighted Continuous Ranked Probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this property is developed and studied. The score is a suitable alternative for scoring extreme value models over areas with varying scale of extreme events, and we derive explicit formulas of the score for the Generalised Extreme Value distribution. The scoring rules are compared through simulation, and their usage is illustrated in modelling of extreme water levels, annual maximum rainfalls, and in an application to non-extreme forecast for the prediction of air pollution.

The growth of dendritic grains during solidification is often modelled using the Grain Envelope Model (GEM), in which the envelope of the dendrite is an interface tracked by the Phase Field Interface Capturing (PFIC) method. In the PFIC method, an phase-field equation is solved on a fixed mesh to track the position of the envelope. While being versatile and robust, PFIC introduces certain numerical artefacts. In this work, we present an alternative approach for the solution of the GEM that employs a Meshless (sharp) Interface Tracking (MIT) formulation, which uses direct, artefact-free interface tracking. In the MIT, the envelope (interface) is defined as a moving domain boundary and the interface-tracking nodes are boundary nodes for the diffusion problem solved in the domain. To increase the accuracy of the method for the diffusion-controlled moving-boundary problem, an \h-adaptive spatial discretization is used, thus, the node spacing is refined in the vicinity of the envelope. MIT combines a parametric surface reconstruction, a mesh-free discretization of the parametric surfaces and the space enclosed by them, and a high-order approximation of the partial differential operators and of the solute concentration field using radial basis functions augmented with monomials. The proposed method is demonstrated on a two-dimensional \h-adaptive solution of the diffusive growth of dendrite and evaluated by comparing the results to the PFIC approach. It is shown that MIT can reproduce the results calculated with PFIC, that it is convergent and that it can capture more details in the envelope shape than PFIC with a similar spatial discretization.

We extend generalized functional linear models under independence to a situation in which a functional covariate is related to a scalar response variable that exhibits spatial dependence. For estimation, we apply basis expansion and truncation for dimension reduction of the covariate process followed by a composite likelihood estimating equation to handle the spatial dependency. We develop asymptotic results for the proposed model under a repeating lattice asymptotic context, allowing us to construct a confidence interval for the spatial dependence parameter and a confidence band for the parameter function. A binary conditionals model is presented as a concrete illustration and is used in simulation studies to verify the applicability of the asymptotic inferential results.

We introduce a fine-grained framework for uncertainty quantification of predictive models under distributional shifts. This framework distinguishes the shift in covariate distributions from that in the conditional relationship between the outcome (Y) and the covariates (X). We propose to reweight the training samples to adjust for an identifiable covariate shift while protecting against worst-case conditional distribution shift bounded in an $f$-divergence ball. Based on ideas from conformal inference and distributionally robust learning, we present an algorithm that outputs (approximately) valid and efficient prediction intervals in the presence of distributional shifts. As a use case, we apply the framework to sensitivity analysis of individual treatment effects with hidden confounding. The proposed methods are evaluated in simulation studies and three real data applications, demonstrating superior robustness and efficiency compared with existing benchmarks.

Loss reserving generally focuses on identifying a single model that can generate superior predictive performance. However, different loss reserving models specialise in capturing different aspects of loss data. This is recognised in practice in the sense that results from different models are often considered, and sometimes combined. For instance, actuaries may take a weighted average of the prediction outcomes from various loss reserving models, often based on subjective assessments. In this paper, we propose a systematic framework to objectively combine (i.e. ensemble) multiple _stochastic_ loss reserving models such that the strengths offered by different models can be utilised effectively. Our framework contains two main innovations compared to existing literature and practice. Firstly, our criteria model combination considers the full distributional properties of the ensemble and not just the central estimate - which is of particular importance in the reserving context. Secondly, our framework is that it is tailored for the features inherent to reserving data. These include, for instance, accident, development, calendar, and claim maturity effects. Crucially, the relative importance and scarcity of data across accident periods renders the problem distinct from the traditional ensembling techniques in statistical learning. Our framework is illustrated with a complex synthetic dataset. In the results, the optimised ensemble outperforms both (i) traditional model selection strategies, and (ii) an equally weighted ensemble. In particular, the improvement occurs not only with central estimates but also relevant quantiles, such as the 75th percentile of reserves (typically of interest to both insurers and regulators).

In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.

Time-series models typically assume untainted and legitimate streams of data. However, a self-interested adversary may have incentive to corrupt this data, thereby altering a decision maker's inference. Within the broader field of adversarial machine learning, this research provides a novel, probabilistic perspective toward the manipulation of hidden Markov model inferences via corrupted data. In particular, we provision a suite of corruption problems for filtering, smoothing, and decoding inferences leveraging an adversarial risk analysis approach. Multiple stochastic programming models are set forth that incorporate realistic uncertainties and varied attacker objectives. Three general solution methods are developed by alternatively viewing the problem from frequentist and Bayesian perspectives. The efficacy of each method is illustrated via extensive, empirical testing. The developed methods are characterized by their solution quality and computational effort, resulting in a stratification of techniques across varying problem-instance architectures. This research highlights the weaknesses of hidden Markov models under adversarial activity, thereby motivating the need for robustification techniques to ensure their security.

北京阿比特科技有限公司