亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ability to learn and compose functions is foundational to efficient learning and reasoning in humans, enabling flexible generalizations such as creating new dishes from known cooking processes. Beyond sequential chaining of functions, existing linguistics literature indicates that humans can grasp more complex compositions with interacting functions, where output production depends on context changes induced by different function orderings. Extending the investigation into the visual domain, we developed a function learning paradigm to explore the capacity of humans and neural network models in learning and reasoning with compositional functions under varied interaction conditions. Following brief training on individual functions, human participants were assessed on composing two learned functions, in ways covering four main interaction types, including instances in which the application of the first function creates or removes the context for applying the second function. Our findings indicate that humans can make zero-shot generalizations on novel visual function compositions across interaction conditions, demonstrating sensitivity to contextual changes. A comparison with a neural network model on the same task reveals that, through the meta-learning for compositionality (MLC) approach, a standard sequence-to-sequence Transformer can mimic human generalization patterns in composing functions.

相關內容

We develop an inferential toolkit for analyzing object-valued responses, which correspond to data situated in general metric spaces, paired with Euclidean predictors within the conformal framework. To this end we introduce conditional profile average transport costs, where we compare distance profiles that correspond to one-dimensional distributions of probability mass falling into balls of increasing radius through the optimal transport cost when moving from one distance profile to another. The average transport cost to transport a given distance profile to all others is crucial for statistical inference in metric spaces and underpins the proposed conditional profile scores. A key feature of the proposed approach is to utilize the distribution of conditional profile average transport costs as conformity score for general metric space-valued responses, which facilitates the construction of prediction sets by the split conformal algorithm. We derive the uniform convergence rate of the proposed conformity score estimators and establish asymptotic conditional validity for the prediction sets. The finite sample performance for synthetic data in various metric spaces demonstrates that the proposed conditional profile score outperforms existing methods in terms of both coverage level and size of the resulting prediction sets, even in the special case of scalar and thus Euclidean responses. We also demonstrate the practical utility of conditional profile scores for network data from New York taxi trips and for compositional data reflecting energy sourcing of U.S. states.

The article introduces a method to learn dynamical systems that are governed by Euler--Lagrange equations from data. The method is based on Gaussian process regression and identifies continuous or discrete Lagrangians and is, therefore, structure preserving by design. A rigorous proof of convergence as the distance between observation data points converges to zero is provided. Next to convergence guarantees, the method allows for quantification of model uncertainty, which can provide a basis of adaptive sampling techniques. We provide efficient uncertainty quantification of any observable that is linear in the Lagrangian, including of Hamiltonian functions (energy) and symplectic structures, which is of interest in the context of system identification. The article overcomes major practical and theoretical difficulties related to the ill-posedness of the identification task of (discrete) Lagrangians through a careful design of geometric regularisation strategies and through an exploit of a relation to convex minimisation problems in reproducing kernel Hilbert spaces.

Deep learning method is of great importance in solving partial differential equations. In this paper, inspired by the failure-informed idea proposed by Gao et.al. (SIAM Journal on Scientific Computing 45(4)(2023)) and as an improvement, a new accurate adaptive deep learning method is proposed for solving elliptic problems, including the interface problems and the convection-dominated problems. Based on the failure probability framework, the piece-wise uniform distribution is used to approximate the optimal proposal distribution and an kernel-based method is proposed for efficient sampling. Together with the improved Levenberg-Marquardt optimization method, the proposed adaptive deep learning method shows great potential in improving solution accuracy. Numerical tests on the elliptic problems without interface conditions, on the elliptic interface problem, and on the convection-dominated problems demonstrate the effectiveness of the proposed method, as it reduces the relative errors by a factor varying from $10^2$ to $10^4$ for different cases.

We propose a comprehensive framework for policy gradient methods tailored to continuous time reinforcement learning. This is based on the connection between stochastic control problems and randomised problems, enabling applications across various classes of Markovian continuous time control problems, beyond diffusion models, including e.g. regular, impulse and optimal stopping/switching problems. By utilizing change of measure in the control randomisation technique, we derive a new policy gradient representation for these randomised problems, featuring parametrised intensity policies. We further develop actor-critic algorithms specifically designed to address general Markovian stochastic control issues. Our framework is demonstrated through its application to optimal switching problems, with two numerical case studies in the energy sector focusing on real options.

Deep learning models can exhibit what appears to be a sudden ability to solve a new problem as training time ($T$), training data ($D$), or model size ($N$) increases, a phenomenon known as emergence. In this paper, we present a framework where each new ability (a skill) is represented as a basis function. We solve a simple multi-linear model in this skill-basis, finding analytic expressions for the emergence of new skills, as well as for scaling laws of the loss with training time, data size, model size, and optimal compute ($C$). We compare our detailed calculations to direct simulations of a two-layer neural network trained on multitask sparse parity, where the tasks in the dataset are distributed according to a power-law. Our simple model captures, using a single fit parameter, the sigmoidal emergence of multiple new skills as training time, data size or model size increases in the neural network.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

Many problems in statistics and machine learning can be formulated as model selection problems, where the goal is to choose an optimal parsimonious model among a set of candidate models. It is typical to conduct model selection by penalizing the objective function via information criteria (IC), as with the pioneering work by Akaike and Schwarz. Via recent work, we propose a generalized IC framework to consistently estimate general loss-based learning problems. In this work, we propose a consistent estimation method for Generalized Linear Model (GLM) regressions by utilizing the recent IC developments. We advance the generalized IC framework by proposing model selection problems, where the model set consists of a potentially uncountable set of models. In addition to theoretical expositions, our proposal introduces a computational procedure for the implementation of our methods in the finite sample setting, which we demonstrate via an extensive simulation study.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司