亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we present an information reconciliation protocol designed for Continuous-Variable QKD using the Distributional Transform. By combining tools from copula and information theories, we present a method for extracting independent symmetric Bernoulli bits for Gaussian modulated CVQKD protocols, which we called the Distributional Transform Expansion (DTE). We derived the expressions for the maximum reconciliation efficiency for both homodyne and heterodyne measurement, which, for the last one, efficiency greater than 0.9 is achievable at signal to noise ratio lower than -3.6 dB

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · ForCES · 可約的 · CASE · 示例 ·
2022 年 6 月 9 日

Whilst lattice-based cryptosystems are believed to be resistant to quantum attack, they are often forced to pay for that security with inefficiencies in implementation. This problem is overcome by ring- and module-based schemes such as Ring-LWE or Module-LWE, whose keysize can be reduced by exploiting its algebraic structure, allowing for faster computations. Many rings may be chosen to define such cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing for easy multiplication, are the community standard. However, there is still much uncertainty as to whether this structure may be exploited to an adversary's benefit. In this paper, we show that the decomposition group of a cyclotomic ring of arbitrary conductor can be utilised to significantly decrease the dimension of the ideal (or module) lattice required to solve a given instance of SVP. Moreover, we show that there exist a large number of rational primes for which, if the prime ideal factors of an ideal lie over primes of this form, give rise to an "easy" instance of SVP. It is important to note that the work on ideal SVP does not break Ring-LWE, since its security reduction is from worst case ideal SVP to average case Ring-LWE, and is one way.

The quality of assessment determines the quality of learning, and is characterized by validity, reliability and difficulty. Mastery of learning is generally represented by the difficulty levels of assessment items. A very large number of variables are identified in the literature to measure the difficulty level. These variables, which are not completely independent of one another, are categorized into learner dependent, learner independent, generic, non-generic and score based. This research proposes a model for predicting the difficulty level of assessment items in engineering courses using learner independent and generic variables. An ordinal regression model is developed for predicting the difficulty level, and uses six variables including three stimuli variables (item presentation, usage of technical notations and number of resources), two content related variables (number of concepts and procedures) and one task variable (number of conditions). Experimental results from three engineering courses provide around 80% accuracy in classification of items using the proposed model.

In longitudinal study, it is common that response and covariate are not measured at the same time, which complicates the analysis to a large extent. In this paper, we take into account the estimation of generalized varying coefficient model with such asynchronous observations. A penalized kernel-weighted estimating equation is constructed through kernel technique in the framework of functional data analysis. Moreover, local sparsity is also considered in the estimating equation to improve the interpretability of the estimate. We extend the iteratively reweighted least squares (IRLS) algorithm in our computation. The theoretical properties are established in terms of both consistency and sparsistency, and the simulation studies further verify the satisfying performance of our method when compared with existing approaches. The method is applied to an AIDS study to reveal its practical merits.

Exponential generalization bounds with near-tight rates have recently been established for uniformly stable learning algorithms. The notion of uniform stability, however, is stringent in the sense that it is invariant to the data-generating distribution. Under the weaker and distribution dependent notions of stability such as hypothesis stability and $L_2$-stability, the literature suggests that only polynomial generalization bounds are possible in general cases. The present paper addresses this long standing tension between these two regimes of results and makes progress towards relaxing it inside a classic framework of confidence-boosting. To this end, we first establish an in-expectation first moment generalization error bound for potentially randomized learning algorithms with $L_2$-stability, based on which we then show that a properly designed subbagging process leads to near-tight exponential generalization bounds over the randomness of both data and algorithm. We further substantialize these generic results to stochastic gradient descent (SGD) to derive improved high-probability generalization bounds for convex or non-convex optimization problems with natural time decaying learning rates, which have not been possible to prove with the existing hypothesis stability or uniform stability based results.

In this paper, we study the problem of conducting self-supervised learning for node representation learning on non-homophilous graphs. Existing self-supervised learning methods typically assume the graph is homophilous where linked nodes often belong to the same class or have similar features. However, such assumptions of homophily do not always hold true in real-world graphs. We address this problem by developing a decoupled self-supervised learning (DSSL) framework for graph neural networks. DSSL imitates a generative process of nodes and links from latent variable modeling of the semantic structure, which decouples different underlying semantics between different neighborhoods into the self-supervised node learning process. Our DSSL framework is agnostic to the encoders and does not need prefabricated augmentations, thus is flexible to different graphs. To effectively optimize the framework with latent variables, we derive the evidence lower-bound of the self-supervised objective and develop a scalable training algorithm with variational inference. We provide a theoretical analysis to justify that DSSL enjoys better downstream performance. Extensive experiments on various types of graph benchmarks demonstrate that our proposed framework can significantly achieve better performance compared with competitive self-supervised learning baselines.

In linear regression we wish to estimate the optimum linear least squares predictor for a distribution over $d$-dimensional input points and real-valued responses, based on a small sample. Under standard random design analysis, where the sample is drawn i.i.d. from the input distribution, the least squares solution for that sample can be viewed as the natural estimator of the optimum. Unfortunately, this estimator almost always incurs an undesirable bias coming from the randomness of the input points, which is a significant bottleneck in model averaging. In this paper we show that it is possible to draw a non-i.i.d. sample of input points such that, regardless of the response model, the least squares solution is an unbiased estimator of the optimum. Moreover, this sample can be produced efficiently by augmenting a previously drawn i.i.d. sample with an additional set of $d$ points, drawn jointly according to a certain determinantal point process constructed from the input distribution rescaled by the squared volume spanned by the points. Motivated by this, we develop a theoretical framework for studying volume-rescaled sampling, and in the process prove a number of new matrix expectation identities. We use them to show that for any input distribution and $\epsilon>0$ there is a random design consisting of $O(d\log d+ d/\epsilon)$ points from which an unbiased estimator can be constructed whose expected square loss over the entire distribution is bounded by $1+\epsilon$ times the loss of the optimum. We provide efficient algorithms for generating such unbiased estimators in a number of practical settings and support our claims experimentally.

We propose an unsupervised tree boosting algorithm for inferring the underlying sampling distribution of an i.i.d. sample based on fitting additive tree ensembles in a fashion analogous to supervised tree boosting. Integral to the algorithm is a new notion of "addition" on probability distributions that leads to a coherent notion of "residualization", i.e., subtracting a probability distribution from an observation to remove the distributional structure from the sampling distribution of the latter. We show that these notions arise naturally for univariate distributions through cumulative distribution function (CDF) transforms and compositions due to several "group-like" properties of univariate CDFs. While the traditional multivariate CDF does not preserve these properties, a new definition of multivariate CDF can restore these properties, thereby allowing the notions of "addition" and "residualization" to be formulated for multivariate settings as well. This then gives rise to the unsupervised boosting algorithm based on forward-stagewise fitting of an additive tree ensemble, which sequentially reduces the Kullback-Leibler divergence from the truth. The algorithm allows analytic evaluation of the fitted density and outputs a generative model that can be readily sampled from. We enhance the algorithm with scale-dependent shrinkage and a two-stage strategy that separately fits the marginals and the copula. The algorithm then performs competitively to state-of-the-art deep-learning approaches in multivariate density estimation on multiple benchmark datasets.

Considering two random variables with different laws to which we only have access through finite size iid samples, we address how to reweight the first sample so that its empirical distribution converges towards the true law of the second sample as the size of both samples goes to infinity. We study an optimal reweighting that minimizes the Wasserstein distance between the empirical measures of the two samples, and leads to an expression of the weights in terms of Nearest Neighbors. The consistency and some asymptotic convergence rates in terms of expected Wasserstein distance are derived, and do not need the assumption of absolute continuity of one random variable with respect to the other. These results have some application in Uncertainty Quantification for decoupled estimation and in the bound of the generalization error for the Nearest Neighbor Regression under covariate shift.

A common approach when studying the quality of representation involves comparing the latent preferences of voters and legislators, commonly obtained by fitting an item-response theory (IRT) model to a common set of stimuli. Despite being exposed to the same stimuli, voters and legislators may not share a common understanding of how these stimuli map onto their latent preferences, leading to differential item-functioning (DIF) and incomparability of estimates. We explore the presence of DIF and incomparability of latent preferences obtained through IRT models by re-analyzing an influential survey data set, where survey respondents expressed their preferences on roll call votes that U.S. legislators had previously voted on. To do so, we propose defining a Dirichlet Process prior over item-response functions in standard IRT models. In contrast to typical multi-step approaches to detecting DIF, our strategy allows researchers to fit a single model, automatically identifying incomparable sub-groups with different mappings from latent traits onto observed responses. We find that although there is a group of voters whose estimated positions can be safely compared to those of legislators, a sizeable share of surveyed voters understand stimuli in fundamentally different ways. Ignoring these issues can lead to incorrect conclusions about the quality of representation.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

北京阿比特科技有限公司