Message passing neural networks (MPNNs) have been shown to suffer from the phenomenon of over-squashing that causes poor performance for tasks relying on long-range interactions. This can be largely attributed to message passing only occurring locally, over a node's immediate neighbours. Rewiring approaches attempting to make graphs 'more connected', and supposedly better suited to long-range tasks, often lose the inductive bias provided by distance on the graph since they make distant nodes communicate instantly at every layer. In this paper we propose a framework, applicable to any MPNN architecture, that performs a layer-dependent rewiring to ensure gradual densification of the graph. We also propose a delay mechanism that permits skip connections between nodes depending on the layer and their mutual distance. We validate our approach on several long-range tasks and show that it outperforms graph Transformers and multi-hop MPNNs.
We propose a simple approach for weighting self-connecting edges in a Graph Convolutional Network (GCN) and show its impact on depression detection from transcribed clinical interviews. To this end, we use a GCN for modeling non-consecutive and long-distance semantics to classify the transcriptions into depressed or control subjects. The proposed method aims to mitigate the limiting assumptions of locality and the equal importance of self-connections vs. edges to neighboring nodes in GCNs, while preserving attractive features such as low computational cost, data agnostic, and interpretability capabilities. We perform an exhaustive evaluation in two benchmark datasets. Results show that our approach consistently outperforms the vanilla GCN model as well as previously reported results, achieving an F1=0.84% on both datasets. Finally, a qualitative analysis illustrates the interpretability capabilities of the proposed approach and its alignment with previous findings in psychology.
Simultaneous feature selection and non-linear function estimation are challenging, especially in high-dimensional settings where the number of variables exceeds the available sample size in modeling. In this article, we investigate the problem of feature selection in neural networks. Although the group LASSO has been utilized to select variables for learning with neural networks, it tends to select unimportant variables into the model to compensate for its over-shrinkage. To overcome this limitation, we propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings. The main idea is to apply a proper concave penalty to the $l_2$ norm of weights from all outgoing connections of each input node, and thus obtain a neural net that only uses a small subset of the original variables. In addition, we develop an effective algorithm based on backward path-wise optimization to yield stable solution paths, in order to tackle the challenge of complex optimization landscapes. Our extensive simulation studies and real data examples demonstrate satisfactory finite sample performances of the proposed estimator, in feature selection and prediction for modeling continuous, binary, and time-to-event outcomes.
To support the newly introduced multimedia services with ultra-low latency and extensive computation requirements, resource-constrained end user devices should utilize the ubiquitous computing resources available at network edge for augmenting on-board (local) processing with edge computing. In this regard, the capability of cell-free massive MIMO to provide reliable access links by guaranteeing uniform quality of service without cell edge can be exploited for seamless parallel processing. Taking this into account, we consider a cell-free massive MIMO-enabled mobile edge network to meet the stringent requirements of the advanced services. For the considered mobile edge network, we formulate a joint communication and computing resource allocation (JCCRA) problem with the objective of minimizing energy consumption of the users while meeting the tight delay constraints. We then propose a fully distributed cooperative solution approach based on multiagent deep deterministic policy gradient (MADDPG) algorithm. The simulation results demonstrate that the performance of the proposed distributed approach has converged to that of a centralized deep deterministic policy gradient (DDPG)-based target benchmark, while alleviating the large overhead associated with the latter. Furthermore, it has been shown that our approach significantly outperforms heuristic baselines in terms of energy efficiency, roughly up to 5 times less total energy consumption.
Threshold signatures are a fundamental cryptographic primitive used in many practical applications. As proposed by Boneh and Komlo (CRYPTO'22), TAPS is a threshold signature that is a hybrid of privacy and accountability. It enables a combiner to combine t signature shares while revealing nothing about the threshold t or signing quorum to the public and asks a tracer to track a signature to the quorum that generates it. However, TAPS has three disadvantages: it 1) structures upon a centralized model, 2) assumes that both combiner and tracer are honest, and 3) leaves the tracing unnotarized and static. In this work, we introduce Decentralized, Threshold, dynamically Accountable and Private Signature (DeTAPS) that provides decentralized combining and tracing, enhanced privacy against untrusted combiners (tracers), and notarized and dynamic tracing. Specifically, we adopt Dynamic Threshold Public-Key Encryption (DTPKE) to dynamically notarize the tracing process, design non-interactive zero knowledge proofs to achieve public verifiability of notaries, and utilize the Key-Aggregate Searchable Encryption to bridge TAPS and DTPKE so as to awaken the notaries securely and efficiently. In addition, we formalize the definitions and security requirements for DeTAPS. Then we present a generic construction and formally prove its security and privacy. To evaluate the performance, we build a prototype based on SGX2 and Ethereum.
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.